Subject Index

A
Abelian groups, 458–460, 465
Absorption, set theoretic identities, 495
Active attacks; See also specific attacks
 basic concepts, 12
 on OFB mode, 285
Addition
 AES
 algorithm operations, 433
 computer program for, 449
 encryption, 423
 Galois fields, 413, 423
 nibble, 419, 445–446
 algorithm complexity analysis, assessing work required to execute, 246, 247
 elliptic curve, 454–458
 algebraic algorithm, 455–458
 computer implementations and exercises, 483–484, 485
 curves over \(\mathbb{Z}_p \), 463–466
 geometric algorithm, 455, 456
 finite fields, 383, 384
 Galois fields, 398, 413, 423
 rings, 378–379, 381, 410
 matrix, 146–147, 149, 150, 175
 modular integer systems, 59
 polynomial; See Polynomials, addition
 vector, 457
Addition algorithm with base \(b \)
 expansions, 229–231
Additive groups, 459
Additive identity, 378, 383, 410
elliptic curve addition, 458
modular arithmetic, 59
Additive inverses, 379
Add Round Key operation, AES
 computer program for, 447
 decryption, 431
 encryption, 422, 424, 429, 437
 exercises, 444–445
 full (128 bit) AES, 438
ADFGVX cipher, 32–35, 102
Adjacent digits, 78, 80
Adjacent letters, 182, 183, 215
Adjacent pairs, 34, 571
Adleman, Leonard, 22, 331, 338, 339
Advanced encryption standard (AES)
 protocol, 21, 417–449
 byte representation and arithmetic, 432–434
 computer implementations and exercises, 445–449
 decryption algorithm, 439–440
 development of, 254, 417–419
 encryption algorithm, 437–438
 exercises, 441–445
 exercise solutions, 560–563, 609–611
 full (128 bit key) AES, 432
 437–438
 Galois fields, 399, 400
 nibbles, 419–421
 scaled-down version, 421–429
 computer programs for, 446–449
 decryption, 429–432
 encryption, 421–429
 encryption algorithm, 435–437
 438
security of, 440
Affine ciphers
 computer programs for, 136, 137–140
 with homophones, 138–139
 with homophones and nulls, 139–140
 with nulls, 137–138
 evolution of codemaking, 96–100
 passive attacks on, 98–100
Affine function/mapping, 96
 AES, 444
 composition, 109–110
 digraph block cryptosystems, 132–133
 homophones, 105–106
 nulls, 103–104
Agrawal, Manindra, 309
AKS test, 309
Algorithm complexity analysis, assessing work required to execute, 246–247
Algorithms, defined, 3–4
Alice (literature convention), 2, 22, 23, 339, 340
Alphabets
basic concepts, 3
cryptosystem components, 94
English, 13–14, 95
monoalphabetic and polyalphabetic
ciphers, 12–15
number of characters, 95
plaintext conversion to numerical
equivalents, 225–228
American Standard Code for
Information Interchange
(ASCII), 227, 254, 340
Ancient codes, 91–94
Arab culture, cryptography in, 102
Arithmetic
algorithm complexity analysis,
assessing work required to
execute, 246–247
elliptic curve, 451
integers in different bases
addition algorithm with base \(b \)
expansions, 229–231
computer implementations and
exercises, 248–250
exercises, 241–247
exercise solutions, 536–540
large integers, 237–239
multiplication algorithm
with base \(b \) expansions,
234–237
subtraction algorithm with base
\(b \) expansions, 231–234
matrix, 175
addition, subtraction, and scalar
multiplication, 146–147
multiplication, 147–151;
See also Matrix
multiplication
properties of, 149–150
modular integer systems, 59; See
also Divisibility and modular
arithmetic
nibble
addition and multiplication,
419–420
computer implementations and
exercises, 445–446
ASCII, 227, 254, 340
Assissi, Benicio de, 102
Associativity
abelian group, 459
addition, 378, 383, 459
elliptic curve, 458, 483
matrix arithmetic, 149, 150
multiplication, 379, 383
rings, 379
set theoretic identities, 495
Asymmetric key cryptography,
21–22; See also Public key
cryptography
Attacks on cryptosystems, 2; See also
specific attacks
affine ciphers, 98–100
evolution of codebreaking; See
Evolution of codebreaking
till computer era
overview, 12–15
Authentication
basic concepts, 1
features of public key
cryptosystems, 25
public key cryptography, 343–345
digital signatures, 343–345
ElGamal cryptosystem,
347–349, 373
RSA digital signatures, 371
Avalanche condition, strong, 419
Avalanche effect, 272, 290–291

B
Babbage, Charles, 187, 207
Babbage/Kasiski attack, 108
computer programs to aid in,
216–218
Vigenère cipher demise, 188–192
Bases; See also Integers in different
bases
elliptic curve discrete logarithm
problem, 466
Bayes’ formula, 510–511
Belaso, Giovanni Battista, 15
Ben-Or’s irreducibility determination
algorithm, 410–411, 414–415
Biased, probabilities, 502
Big-O notation, 247
Bijections
finite fields, 382
overview, 5–7
Binary alphabet, basic concepts, 3
Binary expansions
AES algorithm operations, 434
integers in different bases, 221,
224–227
addition algorithm with base \(b \)
expansions, 231–234
multiplication algorithm in base
\(b \) expansions, 234–237
Binary operations
abelian group, 458–460
algorithm complexity analysis,
assessing work required to
execute, 246–247
elliptic curve, 483
finite fields, 377–378
rings, 378–379, 381, 406–407
Binary strings
basic concepts, 3
plaintext conversion to numerical
equivalents, 225–228
Binary vectors
 knapsack problem reformulation, 350
 nibble addition and multiplication, 419
 rings, 406–407
Binomial random variables, 511–513
Birthday problem, 505–507
Bit operations, work required to execute
 algorithm complexity analysis, 246–247
Bits, word size, 238
Bit strings, 238
 conversion programs, 286
 nibble addition, 420
 plaintext conversion to numerical equivalents, 225–228
Bitwise representation, AES algorithm, 432, 433
Bletchley Park, 22, 202, 206–208, 252
Block ciphers, 20, 26
 evolution of codebreaking, 190
 Hill cryptosystem, 162–166; See also Hill cryptosystem
 Playfair cipher as, 18
Block cryptosystems, 132–133, 251–292
 computer implementations and exercises, 286–292
 DES, 265–272
 adoption of, 252–254
 fall of, 272–273
 scaled-down version, 258–265
 triple, 273–274
 evolution of computers into cryptosystems, 251–252
 exercises, 279–286
 public key cryptography, 367–368
 solutions, 540–545, 599–601
 Feistel cryptosystems, 255–258
 modes of operation for, 274–279
 block mode, 274–276
 cipherblock chaining (CBC) mode, 275–276
 cipher feedback (CFB) mode, 276–278
 electronic codebook (ECB) mode, 274–275
 output feedback (OFB) mode, 278–279
 XOR operation, 254–255
 Block matrix multiplication, 172–174
 Block mode operations, block cryptosystem, 274–276
 Block size
 AES
 versus Rijndael, 419
 scaled-down versus 128-bit key, 421
 DES, scaled-down, 258
 Feistel cryptosystems, 255
Bob (literature convention), 2, 22, 339, 340
Broadcast attack, RSA cryptosystem, 366
Brute-force approach
 DES attacks, 273
 elliptic curve discrete logarithm problem, 467
 irreducibility test for polynomials in $\mathbb{Z}_p[X]$, 394, 395
 knapsack problem, 374
 modular inverses, 87
 passive attacks on substitution cipher, 13
 points on modular elliptic curve, 452–456, 462
Byte, definition of, 276
Byte arithmetic/operations, AES, 432–434
 AES algorithm operations, 432, 433
 computer program for, 449
 exercises, 443
 nibble-byte subtransformations, 444–445
 sub transformation, encryption algorithm, 424, 436, 437, 439
C
 Caesar cipher, 9–11, 94
 evolution of codemaking, 101
 shift ciphers, 95
 Cardinality, 495, 496
 Carmichael, Robert, 311
 Carmichael numbers, 311–312
 Carries
 addition algorithm with base b expansions, 229, 230
 multiplication algorithm with base b expansion, 234, 235, 236, 238
 Cartesian product set, 496
 Cauchy, Augustus, 382
 CBC (cipher block chaining) mode, 275–276
 Ceiling function, definition of, 48
 Certification, primes, 309
 CFB (cipher feedback) mode, 276–278
 Chain matrix multiplication, 167–168
 Champollion, Jean-Francois, 92
 Change of base formula, 224
 Chiffre indechiffreable, le, 15, 108
 Chinese remainder theorem, 67–71, 359
 computer implementations and exercises, 89
 elliptic curve-based factoring algorithm, 476
 RSA cryptosystem, 341
Subject Index

Chor-Rivest cryptosystem, 356
Chosen ciphertext attacks, 12, 32
 affine ciphers, 99–100
 exercises, 133
 Hill cryptosystem, 164, 170
 RSA cryptosystem, 366
Chosen plaintext attacks, 12, 13, 99
 differential cryptanalysis, 272
 Hill cryptosystem, 164
 linear cryptanalysis, 273
Church, Alonzo, 207
Cipherblock chaining (CBC) mode,
 block cryptosystems, 275–276
Cipher feedback (CFB) mode, block
 cryptosystems, 276–278
Ciphergram, computer program
 for extracting data from ciphertext string, 216–218
Ciphers
 ADFGVX, 32–35
 versus code, 91
 Playfair, 18–25
 programming with integer arithmetic, 38–39
 standards, 2
 substitution, 8–11
 terminology, 94
 Vignière, 15–18
Ciphertext
 basic concepts, 2
 partial substitutions, program for, 215
 substitution ciphers, 8–11
Ciphertext attacks
 affine ciphers, 99–100
 chosen; See Chosen ciphertext attacks
 types of, 12
Ciphertext-only attacks, 12, 13
 affine ciphers, 98, 136
 frequency analysis-based, 186
 homophonic cryptosystems and, 106–107
 on shift cipher, 38
 Vigenère cipher, 200–201
Classical adjoint formula for matrix inversions, 159–162,
 171–172, 176
Clay foundation, 24
Closure, ring, 380
Cocks, Clifford, 22, 23
Code, versus cipher, 91
Codebreaking; See Decryption;
 Evolution of codebreaking till computer era
Codemaking; See Encryption;
 Evolution of codemaking till computer era
Coding theory
 congruency applications, 77–79
 Shannon’s contributions to, 25
Codomain, basic concepts, 4, 5
Coefficient formula, polynomials, 387
Coefficients, 385, 390
Cofactor expansion algorithm, 153–154,
 157, 160, 171–172, 529
 classical adjoint formula with, 159
 computer platform caveat, 161
 computer programs, 176
Cogitata Physica- Mathematica
 (Mersenne), 81
Cohen, Henri, 314
Coincidence, index of, 193–201
Column index, AES encryption algorithm, 437–438
Column matrix, 146
Combinatorics, 495
Common modulus attack, RSA cryptosystem, 365
Commutation, composition of functions
 and, 110
Commutative rings, 58
Commutativity
 addition, 378, 458
 elliptic curve
 abelian group, 458–460
 addition, 458
 exercises, 483
 matrix arithmetic, 148–149, 150
 ring multiplication, 379
 set theoretic identities, 495
Complementarity probability rule, 504
Complementary keys, DES, 284
Complementary plaintext, DES, 284
Complement bit strings, exercise, 279–280
Complements, set, 494, 495, 499
Complexity analysis of algorithms,
 assessing work required to execute, 246–247
Complexity of polynomials, RSA
 security guarantees, 357
Complex roots, elliptic curves over real numbers, 453
Composite integers, defined, 44
Compositeness
 Carmichael numbers, 311–312
 Miller–Rabin test, 314
 witness to, 309–310
Composite numbers, Lenstra’s algorithm application, 482
Composition of functions, 332–333
 dissection of Enigma machine into permutations, 119–120
 evolution of codemaking, 109–110
 inverse of, 429
 permutations, computer program for, 141
repeated, 117
scaled-down Enigma machine, 120–121
triple, 122
Computational number theory, 309
Computation issues
algorithm complexity analysis, assessing work required to execute, 246–247
floating point platform limitations, 85, 87, 161, 237, 240, 296, 314, 317–318, 325, 369, 483
elliptic curve operations, 483
Lenstra’s algorithm, 477
RSA cryptosystem, 341
Moore’s law, 440
public key cryptography, 334
vector representation of polynomials, 387–388
Computation of orders, 303
Computer-generated random numbers, 40, 41
Computer implementations and exercises
AES, 445–449
block cryptosystems, 286–292
codebreaking evolution, 214–220
Babbage/Kasiski attack, programs to aid in, 216–218
frequency analysis, programs to aid in, 214–215
Friedman attack, programs related to, 218–220
index of coincidence, 218
codemaking evolution, 136–143
cofactor expansion method, 89, 161, 176
DES, 287–292
division algorithm, 86
elliptic curve cryptography, 483–487
modular elliptic curves, 484, 485
nonsingular elliptic curve, 483–484, 485
fast modular exponentiation, 240
Feistel cryptosystems, 287
finite fields, 411–415
Hill cryptosystem, 177–178
integers in different bases, 224, 248–250
matrices and Hill cryptosystem, 174–179
fast matrix multiplication, 179
modular matrices, 175–177, 178–179
scalar multiplication, 175
square (invertible) matrix, 175–176
Strassen’s algorithm, 179
modular arithmetic, 85–89
Chinese remainder theorem, 89
congruences, 88
Euclidean algorithm, 86–88
prime factorization, 85–86
number theory and algorithms, 325–329
overview, 35–41
computer-generated random numbers, 39–41
integer/text conversions, 36–37
programming basic ciphers with integer arithmetic, 38–39
vector/string conversions, 35–36
public key cryptography, 369–375
random substitution ciphers, 220
readings in, 616
three-round Feistel systems, 287
XOR program, 287
Concatenation, 7
Conditional probability, 507–509
Conditioning, 195, 509–511
Confederate cipher disk, 11
Confusion
one-time pad, 25–26
Shannon’s properties of, 272, 419
Congruence classes, 54–55
Congruences
addition of elliptic curves over \mathbb{Z}_p, 464
basic properties, 54
Chinese remainder theorem, 67–71
computer implementations and exercises, 88
congruent mod m, 53
divisibility and modular arithmetic, 52–58
exercises
credit card error detecting codes, 79–80
divisibility criteria, 82–83
ISBN error detecting codes, 77–79
round robin tournaments, 80
modular elliptic curves, 461–462
solving, 61, 64–66
validity of congruent substitutions in modular arithmetic, 56–57
in $\mathbb{Z}_p[X]$ modulo, 395–396
Conjugates, of permutation, 123
Constant polynomial, 385
Continuous infinite sets, 4
Contrapositive, Fermat’s little theorem, 309
Convergence, Gauss’s primitive root finding algorithm, 325
Conversions
integer/text, 36–37
vector/string and string/vector, 35–36, 286
Coppersmith, Don, 150, 272
Correspondence, English alphabet, 95
Counter mode of operation, block cryptosystems, 285–286
Counting principles, 495–499
Credit card error-detecting codes, 79–80, 89
Cryptanalysis
basic concepts, 3
linear and differential, 272–273
Cryptography, 1–2
Cryptosystems
basic concepts, 1–2
block; See Block cryptosystems formal definition, 94–96
Cycle decomposition form invariance, 205–206
Cyclic permutations/cycles, evolution of codemaking, 114–119

D
Daemen, Joan, 418
Data encryption standard (DES), 20–21, 265–272
adoption of, 252–254
AES development, 417–419
computer programs, 287–292
exercises, 282–283
fall of, 272–273
public key cryptography, 333
scaled-down version, 258–265
self-decryption proof, 285
triple, 273–274
Decimal expansion, integers in different bases, 222
Decomposition, disjoint cycle, 115–116, 117, 124
Decryption; See also specific systems
basic concepts, 2–3
codebreaking; See Evolution of codebreaking till computer era
Playfair and Vignère ciphers, 39
Decryption algorithm
AES, 439–440
self-decryption proof, three-round Feistel systems, 285
Decryption exponent, 551, 552, 605, 606
ElGamal cryptosystem, 345–346, 347
RSA cryptosystem
computer programs for, 370, 371, 372
probabilistic factoring algorithms for RSA modulus, 358
public key, 340–341, 342
security guarantee, 357
Decryption functions
cryptosystem components, 94
substitution ciphers, English alphabet, 96
Definitions of basic concepts, 1–4
De Morgan’s Laws, 495
Density, primes, 308
Dependent events, 508
DES; See Data encryption standard
DES algorithm, 262, 264, 265, 267
computer programs for, 290
scaled-down DES, 258–259
Descartes, René, 295
Determinant, square (invertible) matrix, 153–155
Differential cryptanalysis, 272, 273
Diffie, Whit, 21, 22, 331, 333
Diffie–Hellman key exchange, 21, 22, 331, 346
computer program for, 369–370
discrete logarithms, 334
elliptic curve version, 467–468, 474
computer implementations and exercises, 486
exercises, 481
exercises, 360–361, 366–367
with groups, 459
public key cryptography, 336–337
Diffusion
one-time pad, 26
Shannon’s properties of, 272, 419
Digital signatures and authentication,
25
ElGamal cryptosystem, 347–349, 373
public key cryptography, 343–345
RSA cryptosystem, 340, 370–371
Digital Signature Standard (DSS), 345
Digraphs, 107, 132–133
Dimensions, matrix, 145
Direct method, modular exponentiation, 247
Discrete infinite sets, 4
Discrete logarithm problem, 303, 306
exercises, 367
on modular elliptic curves, 466–467
modular elliptic curves, 480
public key cryptosystems, 338
review of, 334–335
Discrete random variable, defined, 511
Discriminant, elliptic curve, 452
Disjoint cases, multiplication principle, 498
Disjoint ciphertext character sets, 189
Disjoint cycle decomposition, 115–116, 124, 205–206
Disjoint probabilities, addition to Kolmogorov’s axiom, 510
Disjoint sets, 492
Disjoint union, sets, 509–510
Distinct primes, square root modulo m, 84
Distributive laws
finite fields, 384
division algorithm, 392
polynomial multiplication, 387, 388
rings, 379, 380, 384
matrix arithmetic, 149, 171
multiplication algorithm in base b expansions, 236
Venn diagrams, 494
Distributivity, set theoretic identities, 495
Dividend
definition of, 47
division algorithm for $\mathbb{Z}_p[X]$, 391, 392
Divisibility and modular arithmetic, 43–89
Chinese remainder theorem, 67–71
divisibility definition and examples, 43–44
division algorithm, 47–48
Euclidean algorithm, 48–52
exercises, 71–85
exercise solutions, 517–522, 572–581
extended Euclidean algorithm, 61–64
greatest common divisors and relatively prime integers, 46–47
modular arithmetic and congruences, 52–58
modular integer systems, 58–60
modular inverses, 60–61
primes, 44–46
solving linear congruences, 64–66
Divisibility criteria, application of congruences, 82–83
Division, polynomial; See Polynomials, division
Division algorithm, 519, 556–557, 563, 584
AES, 421, 434, 445
computer implementations and exercises, 86
congruences, 55–56
conversions among bases and integer equivalents, 223
addition algorithm with base b expansions, 229
subtraction algorithm with base b expansions, 232
Euclidean algorithm and, 48–50
extended, 158
Fermat’s little theorem, 297, 298, 546
matrix arithmetic, 158
modular arithmetic, 47–48, 87, 547
computer programs for, 80, 86
congruences and remainders, 55, 56, 80
Euclidean algorithm, 49, 50–51, 64
exercises, 72
nibbles, 421, 445
polynomial, 391–395, 421, 434
computer programs for, 412
Euclidean algorithm, 404, 405
exercises, 407, 408, 411
Divisor
definition of, 47
division algorithm for $\mathbb{Z}_p[X]$, 391, 392
Domain, basic concepts, 4, 5
Dominance laws, set theoretic identities, 495
Dot product
horizontal shifted, computer program for, 218
matrix operations, 146, 148
vectors, 199–200
Double complementation, set theoretic identities, 495
Double DES, 273
E
ECB (electronic codebook) mode, 274–275
Eckert, J. Presper, 252
Egyptian hieroglyphics, 92, 93, 95
Electronic codebook (ECB) mode, block cryptosystems, 274–275
Electronic Numerical Integrator and Calculator (ENIAC), 252
Elements
matrix, 145
sets, 491
Elements, The (Euclid), 45–46, 503
ElGamal, Taher, 345
ElGamal cryptosystem, 345–347
computer programs, 372–373
digital signatures with, 347–349
discrete logarithms, 334
elliptic curve addition, 466
elliptic curve version, 481
computer implementations and exercises, 486
plaintext representation, 471–473
procedure, 473–475
exercises, 363–364, 366–367
with groups, 459
mathematical problems providing security, 338
modular exponentiation, 301
Subject Index

Elliptic curve cryptography, 25, 451–487
addition of elliptic curves over \(\mathbb{Z}_p \), 463–466
addition operation for, 454–458
computer implementations and exercises, 483–487
Diffie–Hellman key exchange version, 467–468
ElGamal cryptosystem version, 473–475
elliptic curves over finite fields, 463
elliptic curves over real numbers, 452–454
elliptic curves over \(\mathbb{Z}_p \), 460–462
exercises, 477–483
exercise solutions, 563–567, 611–613
factoring algorithm based on, 475–477
groups, 458–462
modular
discrete logarithm problem on, 466–467
fast integer multiplication of points on, 470–471
plaintext representation on, 471–473
sizes of, 462–463
readings in, 616
selections for further reading, 616
Ellis, James, 22–23
Empty sets, 493
Empty strings, 3, 7
Encryption; See also specific systems
basic concepts, 2–3
codemaking evolution; See
Evolution of codemaking till computer era
cryptosystem components, 94
Encryption algorithm, AES, 435–439
128 bit keys, 437–439
scaled-down, 435–437
Encryption exercises, block
cryptosystems, 282–283
Encryption key, basic concepts, 2
Encryption mapping, two-round, 541–543
Encryption programs
AES, scaled-down, 421–425
DES, scaled-down, 288
public key cryptography
ElGamal cryptosystem, 372–373
Merkle–Hellman knapsack cryptosystem, 374–375
RSA cryptosystem, 370
three-round Feistel systems, 287
English alphabet, 13–14, 95
ENIAC (Electronic Numerical Integrator and Calculator), 252
Enigma machines
attack methods, 201–205
German usage protocols, 202–203
Polish codebreakers, 203, 204
Rejewski’s attack, 203–205
evolution of codemaking, 111–114
computer programs, 141–143
dissection into permutations, 119–126
scaled-down, 120–121
special properties of, 126–127
Entropy, 21
Entry, matrix, 145
Equal difference property, 444–445
Equality, polynomials in \(\mathbb{Z}_p[X] \), 385
Equivalence relations, 54
Error-detecting codes
credit card, 79–80, 89
ISBN, 77–79, 88–89
Error propagation, block
cryptosystems, 285
Euclid, 45, 503
Euclidean algorithm
computer implementations and exercises, 86–88
divisibility and modular arithmetic, 48–52
extended, 61–64, 347, 552
addition of elliptic curves over \(\mathbb{Z}_p \), 464
computer implementations and exercises, 414
polynomials, 404–405, 408–409, 414
RSA cryptosystem, 342
cryptosystem, 404–405, 408–409, 414
RSA security guarantees, 360
Euclid’s lemma, 51, 312, 461
Euler, Leonhard, 298, 299
Euler’s little theorem, 297–298
Euler’s phi function, 298–299, 303, 320, 326
Euler’s theorem, 300–301, 302, 359
cryptosystem, 320, 326
proof of, 546–547
Eve (literature convention), 2, 23
Event, sample space subset, 502
Evolution of codebreaking till computer era, 181–200
cryptosystem, 214–220
computer implementations and exercises, 214–220
Babbage/Kasiski attack, programs to aid in, 216–218
frequency analysis, programs to aid in, 214–215
Friedman attack, programs related to, 218–220
Enigmas, attack methods, 201–205
German usage protocols, 202–203
Polish codebreakers, 203, 204
Rejewski’s attack, 203–205
exercises, 208–214
exercise solutions, 530–536, 592–595
frequency analysis attacks, 181–186
index of coincidence, 193–201
invariance of cycle decomposition form, 205–208
Turing and Bletchley Park, 206–208
Vigenère cipher demise, 187–192
Babbage/Kasiski attack, 188–192
Friedman attack, 192
Evolution of codemaking till computer era, 91–143
affine ciphers, 96–100
ancient codes, 91–94
composition of functions, 109–110
computer implementations and exercises, 136–143
cyclic permutations/cycles, 114–119
enigma machines, 111–114
dissection into permutations, 119–126
special properties of, 126–127
exercise solutions, 522–526, 581–587
formal definition of cryptosystem, 94–96
homophones, 105–109
nulls, 102–105
permutations
computer representations of, 140–143
cyclic, 114–119
enigma machine dissection into, 119–126
tabular form notation for, 110–111
steganography, 100–102
tabular form notation for permutations, 110–111
Exercise solutions, 451–487, 515–567
Expansion function, DES, 266, 267
Expansions
DES, 261, 269
integers in different bases, 221, 222, 223, 224–227
addition algorithm with base b expansions, 229–231
multiplication algorithm with base b expansions, 234–237
subtraction algorithm with base b expansions, 231–234
Expected value, binomial random variable, 512–513
Experiment, defined, 501
Exponentiation
algorithm complexity analysis, assessing work required to execute, 247
discrete logarithms, 334, 335
fast modular, 239–240, 545–546
squaring algorithm for, 250
Exponents
decryption; See Decryption exponent
magic, Fermat’s little theorem, 297, 298, 300
modular exponentiation; See Fast modular exponentiation; Modular exponentiation
RSA cryptosystem, 340, 341, 342
signature, ElGamal cryptosystem, 347
Extended Euclidean algorithm, 88, 347, 552
addition of elliptic curves over \mathbb{Z}_p, 464
divisibility and modular arithmetic, 61–64
polynomials, 404

F

Factorialization, prime; See Prime factorialization
Factorials, 13
Factoring
elliptic curve arithmetic-based, 482
elliptic curve cryptography-based algorithm, 451, 475–477
Miller–Rabin test with factoring enhancement, 315–316, 328–329
Pollard p-1 factoring algorithm, 316–319
public key cryptosystems
computer implementations and exercises, 371–372
elementary factoring method, 368
one-way functions, 333
RSA cryptosystem, 342
RSA security guarantees, 358
spread 331–368, 338
Factoring problem, 309
Factorization
fundamental theorem of arithmetic, 44
primes, 44, 45, 85–86, 357, 358
RSA cryptosystem, 342
RSA security guarantees, 342, 357, 358
Factors, divisibility, 43, 389
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fair, probability concepts</td>
<td>502</td>
</tr>
<tr>
<td>Fast integer multiplication</td>
<td>470–471, 485–486</td>
</tr>
<tr>
<td>of points, elliptic curve</td>
<td></td>
</tr>
<tr>
<td>Fast matrix multiplication</td>
<td>150, 179</td>
</tr>
<tr>
<td>296–297, 545–546</td>
<td></td>
</tr>
<tr>
<td>Fast modular exponentiation</td>
<td>239–240, 296–297, 545–546</td>
</tr>
<tr>
<td>Diffie–Hellman key exchange,</td>
<td></td>
</tr>
<tr>
<td>elliptic curve protocol</td>
<td>469</td>
</tr>
<tr>
<td>discrete logarithms</td>
<td>335</td>
</tr>
<tr>
<td>Koblitz’s algorithm</td>
<td>472, 473</td>
</tr>
<tr>
<td>Feedback modes, block</td>
<td></td>
</tr>
<tr>
<td>cryptosystems</td>
<td></td>
</tr>
<tr>
<td>cipher feedback (CFB) mode</td>
<td>276–278</td>
</tr>
<tr>
<td>output feedback (OFB) mode</td>
<td>278–279</td>
</tr>
<tr>
<td>Feistel, Horst, 253</td>
<td></td>
</tr>
<tr>
<td>computer implementations and</td>
<td></td>
</tr>
<tr>
<td>exercises, 287</td>
<td></td>
</tr>
<tr>
<td>DES, 265</td>
<td></td>
</tr>
<tr>
<td>exercises, 280–281</td>
<td></td>
</tr>
<tr>
<td>self-decryption proof, 285</td>
<td></td>
</tr>
<tr>
<td>Fermat, Pierre de, 295, 296</td>
<td></td>
</tr>
<tr>
<td>Fermat’s little theorem</td>
<td>295–298, 546</td>
</tr>
<tr>
<td>exercises, 319, 320</td>
<td></td>
</tr>
<tr>
<td>Pollard p-1 factoring algorithm</td>
<td></td>
</tr>
<tr>
<td>basis, 317</td>
<td></td>
</tr>
<tr>
<td>Fermat’s primality test</td>
<td>309–311</td>
</tr>
<tr>
<td>computer programs for, 328</td>
<td></td>
</tr>
<tr>
<td>exercises, 323</td>
<td></td>
</tr>
<tr>
<td>Feynman, Richard, 357</td>
<td></td>
</tr>
<tr>
<td>Field isomorphism, 382</td>
<td></td>
</tr>
<tr>
<td>Finite fields, 377–415</td>
<td></td>
</tr>
<tr>
<td>AES; See Advanced encryption</td>
<td></td>
</tr>
<tr>
<td>standard protocol</td>
<td></td>
</tr>
<tr>
<td>binary operations, 377–378</td>
<td></td>
</tr>
<tr>
<td>building from (\mathbb{Z}[X]), 396–399</td>
<td></td>
</tr>
<tr>
<td>computer implementations and</td>
<td></td>
</tr>
<tr>
<td>exercises, 411–415</td>
<td></td>
</tr>
<tr>
<td>definition of, 381</td>
<td></td>
</tr>
<tr>
<td>elliptic curves over, 463</td>
<td></td>
</tr>
<tr>
<td>exercises, 406–411</td>
<td></td>
</tr>
<tr>
<td>exercise solutions, 554–560, 608–609</td>
<td></td>
</tr>
<tr>
<td>fields, 381–384</td>
<td></td>
</tr>
<tr>
<td>addition and multiplication</td>
<td></td>
</tr>
<tr>
<td>tables, 384</td>
<td></td>
</tr>
<tr>
<td>definition of, 381</td>
<td></td>
</tr>
<tr>
<td>inventory of, 382</td>
<td></td>
</tr>
<tr>
<td>Galois fields, 382, 399–403</td>
<td></td>
</tr>
<tr>
<td>polynomials in (\mathbb{Z}_p[X])</td>
<td></td>
</tr>
<tr>
<td>addition and multiplication of,</td>
<td></td>
</tr>
<tr>
<td>386–387</td>
<td></td>
</tr>
<tr>
<td>congruences in modulo as fixed polynomial, 395–396</td>
<td></td>
</tr>
<tr>
<td>divisibility in, 389–390</td>
<td></td>
</tr>
<tr>
<td>division algorithm for, 391–395</td>
<td></td>
</tr>
<tr>
<td>as ring, 388–389</td>
<td></td>
</tr>
<tr>
<td>polynomials with coefficients in (\mathbb{Z}_p), 385</td>
<td></td>
</tr>
<tr>
<td>rings, 378–380</td>
<td></td>
</tr>
<tr>
<td>Finite sets, 4, 452, 491</td>
<td></td>
</tr>
<tr>
<td>Finite strings, 7</td>
<td></td>
</tr>
<tr>
<td>First on, first off, 333</td>
<td></td>
</tr>
<tr>
<td>Fixed elements, cyclic</td>
<td></td>
</tr>
<tr>
<td>permutation, 115</td>
<td></td>
</tr>
<tr>
<td>Floating point platform</td>
<td></td>
</tr>
<tr>
<td>limitations, 240, 325; See also Computation issues</td>
<td></td>
</tr>
<tr>
<td>Floor function, 40, 47–48</td>
<td></td>
</tr>
<tr>
<td>Flowers, Tommy, 252</td>
<td></td>
</tr>
<tr>
<td>FORTRAN, 252</td>
<td></td>
</tr>
<tr>
<td>Frequency analysis</td>
<td></td>
</tr>
<tr>
<td>computer program for modular</td>
<td></td>
</tr>
<tr>
<td>frequency counts, 216</td>
<td></td>
</tr>
<tr>
<td>computer programs to aid in,</td>
<td></td>
</tr>
<tr>
<td>214–215</td>
<td></td>
</tr>
<tr>
<td>Frequency analysis attacks</td>
<td></td>
</tr>
<tr>
<td>evolution of codebreaking, 181–186</td>
<td></td>
</tr>
<tr>
<td>homophonic cryptosystems and, 106–107</td>
<td></td>
</tr>
<tr>
<td>Vignère cipher, 189–190</td>
<td></td>
</tr>
<tr>
<td>Frequency vector, Friedman</td>
<td></td>
</tr>
<tr>
<td>attack, 199</td>
<td></td>
</tr>
<tr>
<td>Friedman, William F., 188</td>
<td></td>
</tr>
<tr>
<td>Friedman attack, 197–201</td>
<td></td>
</tr>
<tr>
<td>computer programs related to, 218–220</td>
<td></td>
</tr>
<tr>
<td>index of coincidence, 194</td>
<td></td>
</tr>
<tr>
<td>Vignère cipher demise, 192</td>
<td></td>
</tr>
<tr>
<td>Functions; See also Mapping</td>
<td></td>
</tr>
<tr>
<td>basic concepts, 3</td>
<td></td>
</tr>
<tr>
<td>composition of, evolution of codemaking, 109–110</td>
<td></td>
</tr>
<tr>
<td>cryptosystem components, 94</td>
<td></td>
</tr>
<tr>
<td>overview, 4–8</td>
<td></td>
</tr>
<tr>
<td>inverse, 7–8</td>
<td></td>
</tr>
<tr>
<td>one-to-one and onto, bijections, 5–7</td>
<td></td>
</tr>
<tr>
<td>substitution ciphers, 8–11</td>
<td></td>
</tr>
<tr>
<td>Fundamental theorem of algebra, 453</td>
<td></td>
</tr>
<tr>
<td>Fundamental theorem of arithmetic, 44, 46, 51–52</td>
<td></td>
</tr>
</tbody>
</table>

G

Gadsby (Wright), 14
Galois, Evariste, 382, 383
Galois fields, 254, 382, 399–403, 404
AES; See also Advanced encryption standard protocol
AES algorithm operations, 432, 433
encryption, 423–424, 432
Mix Column mapping, 430
nibble addition and multiplication, 419, 420
building finite fields from \(\mathbb{Z}_p[X] \), 396–399
computer programs for addition/multiplication, 413
computation of inverses, 414
Gauss, Carl Friedrich, 52–53, 382
Gaussian elimination, 159
Gauss's algorithm
computer program for, 326
exercises, 322, 325
primitive roots, 307–308
General substitution cipher, known plaintext attack, 13
Geometric algorithm, elliptic curve addition, 455, 456
German usage protocols for Enigmas, 202–203
Government Communications Headquarters (GCHQ), 22, 23
Governments, 3, 356–357
Gram, 190
Graphs, elliptic curve, 453, 454, 455
Greatest common divisors and relatively prime integers, 46–47
Great Internet Mersenne Prime Search (GIMPS), 82
Groups
DES, 273
elliptic curve cryptography, 458–462
Group theory, 459–460

H
Hackers, 2
Hadamard, Jacques, 294
Hardy, Godfrey, 294
Hasse's Theorem, 463, 468
Hawaiian alphabet, 210
Hellman, Martin, 21, 22, 273, 331, 333, 352, 353
Hexadecimal form
AES algorithm operations, 432, 433, 434
DES, 282
computer programs, 290
decryption program, 291

Galois field computations, 400, 401, 402, 403, 408
integers in different bases, 221, 224–227
addition algorithm with base \(b \) expansions, 231–234
multiplication algorithm in base \(b \) expansions, 234–237
nibble operations, 420
Hieroglyphics, 92, 93, 95
Hill, Lester, 162
Hill cryptosystem, 162–166, 169
computer programs, 177–178
exercises, 169–171
Hindu puzzle, 67–71
History of cryptography
ADFGVX cipher, 33–34
Caesar cipher, 9–11
codebreaking; See Evolution of codebreaking till computer era
codemaking; See Evolution of codemaking till computer era
communications technology, 108–109
Mersenne primes, 81–82
one-time pad, 25–28
public key cryptography, 21–25
readings in, 615
selections for further reading, 615
Homophones, 523–524, 593–594
affine ciphers with, 138–140
evolution of codemaking, 105–109
randomized encryption system, 106–107
Horizontal shifted dot products, 218
Horizontal shifted match counts, 218

I
IBM, 252, 418, 419
Identity
abelian group, 459
additive, 379, 383, 410
elliptic curve addition, 458
multiplicative, 379, 380, 383, 410
polynomial, 390
Identity function, 110, 123
Identity matrix, 151, 152
Identity permutation, 96
Image, basic concepts, 4
Inclusion Exclusion principle, probability rules, 504
Independent events, 508
Indeterminate X, 385
Index of coincidence, 193–201, 218
Indian culture, cryptography in, 102
Industrial-grade primes, 314, 372
Infinite sets, 4, 491
Infinity
 elliptic curves over modular integers, 460, 462
 elliptic curves over real numbers, 452
Initial permutation, DES, 265, 266, 270, 271
 computer program for, 289
 inverse, 264, 265, 289
 scaled-down, 259, 260, 263, 264
Input set, basic concepts, 5
Institute of Electrical and Electronics Engineers (IEEE), 238
Integer arithmetic, overview, 38–39
Integers
 alphabets, 95–96
 divisibility and modular arithmetic; See Divisibility and modular arithmetic
 floor function, 40
 modular orders of invertible modular integers, 301–302
 number theory, 43
Integers in different bases, 221–250
 arithmetic with large integers, 237–239
 computer implementations and exercises, 248–250
 exercises, 241–247
 exercise solutions, 536–540, 595–599
 fast modular exponentiation, 239–240
 hexadecimal and binary expansions, 224–227
 addition algorithm with base b expansions, 231–234
 multiplication algorithm in base b expansions, 234–237
 representation of, 221–224
Integer size
 RSA cryptosystem, 341
 symbolic versus floating point systems, 240, 314
Integers modulo m, 58
Integer systems
 modular, 58–60
 relatively prime integers, 46–47
Integer/text conversions, 36–37
Integral domains, 409–410
Integrity, basic concepts, 1
Intersection, sets, 492–495
Invariance of cycle decomposition form, 205–208
Inverse functions
 overview, 7–8
 S-box, 430
 shift permutation, 10
 substitution ciphers, English alphabet, 96
Inverse permutation
 computer program for, 141
 cycle, 116
 DES, 289
 substitution ciphers, English alphabet, 96
Inverse problem, 24
Inverses/inversion/invertibility
 abelian group, 459
 AES computer programs for, 448
 S-box, 444, 448
 composition of functions, 332–333, 429
 elliptic curve addition, 458
 finite fields
 Galois fields, 414
 polynomial Euclidean algorithm for determination of, 408–409
 rings, 379–380, 407
 matrices, 176–177, 430
 classical adjoint for, 159–162
 computer implementations and exercises, 174–176, 178–179
 definition of, 151–153
 definition of invertible matrix, 151–152
 determinant of, 153–155
 Hill cryptosystem, 162–166
 square (invertible), 155–156
 square modular integer, 157–158
 modular, 60–61
 brute-force approach, 87
 extended Euclidean algorithm, 88
 modular orders of invertible modular integers, 301–302
 notation for, 332
 Invertible affine mapping, AES S-box description, 444
 Inv Mix Column, 440
 Inv Nibble Sub mapping, 430, 431, 439–440
 Inv Shift Row, 440
Irreducible polynomials; See Polynomials, irreducible/irreducibility
ISBN error detecting codes, 77–79, 88–89
Isomorphism, field, 382
J
Jacobi, Carl Gustav, 382
Japan, Enigma machine, 112
Jefferson, Thomas, 107–108
j-fold composition, 117
j-unit shift, 123
K
Kasiski, Friederich W., 187
Kayal, Neeraj, 309
k-cycle, 116
Keyboard, Enigma machine elements, 112, 113, 121
Key exchange
Diffie–Hellman, 336–337
secure, quest for, 332–333
Key exchange protocols, 331
Key extraction permutation, DES, 261
Key generation matrix, AES encryption, 425, 426
Key k, AES encryption, 424
Key length
AES, 417, 419
DES cryptosystem, 253
one-time pad, 27, 40
Vigenère cipher, 189, 190, 191, 198, 572
Babbage/Kasiski attack, 216
Friedman attack, 201
Key permutation, English alphabet substitution cyphers, 96
Keys
basic concepts, 2
cryptosystem components, 94
one-time pad, program for creating, 40
private key cryptosystems, 21
public key cryptography, 23
substitution ciphers, 9
Key schedule, Feistel cryptosystems, 255
Key search, Moore’s law, 440
Key size
AES, 417, 421, 432
DES, 254
scaled-down, 258
triple, 273–274
Keyspace
DES, 265
Diffie–Hellman key exchange, 336, 337
RSA cryptosystem, 340
Knapsack problems/cryptosystems, 349–352
computer programs for, 374–375
mathematical problems providing security, 338
Merkle–Hellman, 352–356
public key cryptosystems, 338
Known plaintext attacks, 12, 13, 32, 132, 583
AES Nibble/Byte Sub Transformations and, 445
affine ciphers, 98–99
ElGamal cryptosystem, 367
Hill cipher, 177–178
Koblitz, Neal, 158, 451
Koblitz’s algorithm, 472, 473, 481, 486
Kolmogorov, Andrey, 503
Kolmogorov axioms, 503–504, 505, 510
Kolmogorov probability functions, 507
Kronecker delta, 192
L
Lampboard, Enigma machine elements, 112, 113
Large integers, arithmetic with, 24, 237–239
Leading term, polynomials in \(Z_p[X]\), 387
Lenstra, Hendrik, 451
Lenstra’s algorithm, 476–477, 482, 487
Letter frequency, English alphabet, 13–14, 107
Linear congruences
Chinese remainder theorem, 67–71
solving, 64–66
Linear cryptanalysis, 272, 273
Linguistic properties of language, and frequency-based attacks, 182
Logarithms, discrete, 334–335
Lorenz cipher, 252
Lorenz encryption machines, 252
Lucifer system, 95
M
Magic exponent, Fermat’s little theorem, 297, 298, 300
Mallory (literature convention), 2, 23
Mapping, 4; See also Functions AES
decryption, 429–432
affine function; See Affine function/mapping
two-round, 541–543
MARS, 418
Match counts, horizontal shifted, 218
Mathematical description, AES S-box, 443–444
Mathematical foundations of cryptography, 2, 3
readings in, 615–616
selections for further reading, 615–616
Matrices, 145–179
AES, 424–425, 437, 444
anatomy of matrix, 145–146
arithmetic operations, 149–151
addition, subtraction, and scalar multiplication, 146–147, 149, 150, 175
multiplication; See also Matrix multiplication
Subject Index

classic adjoint for matrix inversions, 159–162
computer implementations and exercises, 174–179
definition of, 147–148
exercises, 166–174
exercise solutions, 526–530, 587–592
Hill cryptosystem, 162–166
modular integer systems, 156–158, 161
multiplication, 147–149
nibble, 424–425, 427
exercises, 441
scaled-down AES encryption, 422
noncommutative ring, 379
noncommutativity of, 148–149
square (invertible) matrix
definition of, 151–153
determinant of, 153–155
inverses of 2x2 matrices, 155–156
transpose of matrix, 156
Matrix distributive law, 171
Matrix multiplication, 147–149
AES decryption, 440
AES encryption, 423
associativity property, 149
block, 172–173
chain, 167–168
computer implementations and exercises, 179
definition of, 147–148
Mix Column mapping, 430
nibble, 441
noncommutativity of, 148–149
ring axioms and, 379
scalar; See Scalar multiplication
Strassen's algorithm, 173–174
Matsui, Mitsuru, 273
Mauchly, John W., 252
Members, set, 491
Menezes, Alfred, 273, 616, 617
Merkle, Ralph, 22, 273, 331, 352, 353
Merkle–Hellman knapsack cryptosystem, 352–356
computer program for, 374–375
exercises, 364–365
Mersenne, Marin, 81
Mersenne primes, 342
Microdots, 100
Miller, Gary, 312
Miller, Victor, 451
Miller–Rabin test, 312–314
computer program for, 327–329
exercises, 323
with factoring enhancement, 315–316, 323
Minoan script, 93, 94
Mix Column Transformation, AES, 440
computer programs for, 447, 448
decryption, 431, 440, 448
encryption, 422–423, 424, 428, 436–437
exercises, 444–445
inverse, 431, 440
Modes of operation, block cryptosystems, 274–279, 285
mod function, computer, 57, 86–87, 161
Mod n primitive roots, exercises, 321–322
Modular arithmetic; See also Divisibility and modular arithmetic
AES algorithm operations, 433, 434
Chinese remainder theorem, 67–71
computer implementations and exercises, 175–179
and congruences, 52–58
elliptic curve-based factoring algorithm, 476
exercises, 321
integer systems, 58–60
inverses, 60–61
matrix, 175
Mix Column mapping, 430
public key cryptography; See Public key cryptography
solving linear congruences, 64–66
square root modulo m, 83–84
Modular elliptic curves
addition of elliptic curves over \mathbb{Z}_p, 463–466
computer implementations and exercises, 484, 485
Diffie–Hellman key exchange, 467–470
discrete logarithm problem on, 466–467
exercises, 478, 479, 480, 481, 482–483
fast integer multiplication of points on, 470–471
plaintext representation on, 471–473
properties of, 460–462
sizes of, 462–463
Modular exponentiation
algorithm complexity analysis, assessing work required to execute, 247
discrete logarithms, 334, 335
Euler's theorem, 300–301
exercises, 319, 320
fast, 239–240, 296–297, 545–546;
See also Fast modular exponentiation
squaring algorithm for, 250
Modular frequency counts, computer program for, 216
Modular integer matrices, 156–158
computer implementations and exercises, 175–177, 178–179
addition and scalar multiplication, 175
determinant of, computing using cofactor expansion, 176

Modular integers
alphabets, 95–96
elliptic curve-based factoring algorithm, 476
elliptic curves over, 459, 460–462
invertible, modular orders of, 301–302
rings, 379

Modular inverses
brute-force approach, 87
Hill cryptosystem decryption, 164
Modular orders of invertible modular integers, 301–302
Modular polynomials, 402–403, 406, 411, 443
Modular powers, 321
Modulus attacks, RSA cryptosystem, 342, 365
Monoalphabetic ciphers, passive attacks on substitution cipher, 12–15
Monotonicity, probability rules, 504
Moore, Gordon, 356
Moore’s law, 356–357, 440
Multiples, divisibility, 43, 389
Multiple solutions, knapsack problems, 349–350

Multiplication
AES algorithm operations, 433, 434
algorithm complexity analysis, assessing work required to execute, 246, 247
algorithm with base b expansions, 234–237
counting principles, 495–499
fast integer multiplication of points on modular elliptic curves, 470–471
fields, 383
finite fields, 384
Galois fields, 399, 400, 401, 402
AES encryption, scaled-down version, 423
AES security, 417
computer program for, 413
matrix; See Matrix multiplication
modular integer systems, 59
mutativity of, 380
nibble, 419, 446
polynomials; See Polynomials, multiplication
rings, 378, 380, 381, 406–407, 410
scalar; See Scalar multiplication
vector, polynomials in $\mathbb{Z}_p[X]$, 388

Multiplication principle, 13, 495–499
Multiplication rule, 509
Multiplicative functions, exercises, 324–325
Multiplicative groups, 459
Multiplicative identity, 379, 383, 410
Multiplicative inverse, rings, 379–380
Mutativity of multiplication, and distributive law, 380
Mutually exclusive events, 503, 509–510
Mutually exclusive (disjoint) sets, 493

N

Nagell, Trygve, 294
National Bureau of Standards (NB), 253
National Institute of Standards and Technology (NIST), 251, 253, 254, 345, 417, 418
National Security Agency (NSA), 3, 252–253, 357
Native American languages, 93–94
Navajo speakers in WWII, 93
n-gram, 190
Nibbles, AES, 419–421
computer implementations and exercises, 445–446
encryption, 424–425, 427
exercises, 441, 444–445
Nibble Sub mapping, inverse of, 430, 439–440
Nibble Sub Transformation, AES computer programs for, 447
decryption, 431
encryption, 422, 424, 428
exercises, 445
Nicolas, Jean Gustave, Baron de la Vallée Poussin, 294
Noncommutative ring, 379
Nonrepudiation, 25, 340
Nonsingular elliptic curve as abelian group under addition operation, 465
computer implementations and exercises, 483–484, 485
definition of, 452
exercises, 478, 479, 480, 481, 483
fast integer multiplication of points on, 470–471
graphs, 453, 454
over modular integers, 460–461
over real numbers, 452
Waterhouse’s Theorem, 463
NP complete problems, 24, 350
Nulls
 affine ciphers with, computer programs, 137–138
 evolution of codemaking, 102–105
 homophones combined with, 107
Number of rounds
 DES, scaled-down, 258
 Feistel cryptosystems, 255
Numbers, matrix terminology, 146
Number systems, abelian group, 458–460
Number theory and algorithms, 43, 293–299
 Carmichael numbers, 311–312
 computer implementations and exercises, 325–329
 divisibility and modular arithmetic;
 See Divisibility and modular arithmetic
 Euler phi function, 298–299
 Euler’s theorem, 300–301
 exercises, 319–325
 exercise solutions, 545–550, 601–604
 Fermat’s little theorem, 295–298
 Fermat’s primality test, 309–311
 Miller–Rabin test, 312–316
 with factoring enhancement, 315–316
 modular orders of invertible modular integers, 301–302
 order of powers formula, 305–308
 Pollard p-1 factoring algorithm, 316–319
 prime number generation, 308–309
 prime number theorem, 293–295
 primitive roots, 302–305
 determination of, 304–305
 existence of, 304
O
 Object weights, knapsack problems, 349, 350–352
 computer programs for, 374
 Merkle–Hellman knapsack cryptosystem, 352–356
 Octal expansions, 225
 OFB (output feedback) mode, 278–279
 One, multiplicative identity in R, 379
 One-time pad, 25–28, 40
 one-to-one functions
 overview, 5–7
 substitution ciphers, 8–11
 One-unit shift permutations, 119
 One-way functions
 Merkle–Hellman knapsack cryptosystem, 353
 public key cryptography, 333–334
Onto functions
 overview, 5–7
 substitution ciphers, 8–11
Ordered lists, Cartesian product set, 496
Ordered pairs, 20, 378, 564, 583
 binary operations, 377, 378
 elliptic curves
 modular, 460, 461, 462
 over real numbers, 452
 Order of powers formula, 305–308
Orders, 293
 computer program for, 326
 computing, 303
 elliptic curve
 addition of elliptic curves over \(\mathbb{Z}_p \), 465, 466
 computer implementations and exercises, 485
 exercises, 321
 modular, of invertible modular integers, 301–302
Outcome, experiment definition, 501
Output feedback (OFB) mode
 active attack on, 285
 block cryptosystems, 278–279
Output target set, basic concepts, 5
Overview, 1–41
 attacks on cryptosystems, 12–15
 computer implementations and exercises, 35–41
 computer-generated random numbers, 39–41
 integer/text conversions, 36–37
 integer arithmetic, 38–39
 programming basic ciphers with
 vector/string conversions, 35–36
 definitions of basic concepts, 1–4
 exercises, 28–35
 ADFGVX cipher, 32–35
 solutions, 515–517, 569–572
 functions, 4–8
 inverse, 7–8
 one-to-one and onto, bijections, 5–7
 one-time pad, perfect secrecy, 25–28
 one-time pad, perfect secrecy, 25–28
 Playfair cipher, 18–25
 substitution ciphers, 8–11
 Vigenère cipher, 15–18
P
 P = NP question, 24
 Painvin, Georges, 33–34
 pairwise mutually exclusive events, 503, 509–510
 Paradoxes, set definition, 491
 Partial substitutions, computer program for, 215
Pascal, Blaise, 295
Passive attacks
 on affine ciphers, 98–100
 basic concepts, 12
 on substitution cipher, 12–15
Perfect secrecy, 26
Performance guarantee, Miller–Rabin test, 314
Periodicity, powers of mod integers, 293
Periodic substitution ciphers, Friedman attack, 192
Permutation ciphers, 101
Permutations
 conjugates of, 123
 evolution of codemaking
 computer representations of, 140–143
 cyclic, 114–119
 enigma machine dissection into, 119–126
 tabular form notation for, 110–111
 random, computer program for generating, 219–220
 substitution ciphers, 9
Phaistos disk, 92–93, 94
Phi function, Euler’s, 298–299, 303, 320
Plaintext
 basic concepts, 2, 3
 conversion to numerical equivalents, 225–228
 cryptosystem components, 94
 Enigma machine properties, 126
 monoalphabetic and polyalphabetic ciphers, 12–13
 representation on modular elliptic curves, 471–473
 computer implementations and exercises, 486
 exercises, 481, 482
 scytale cipher, 101–102
 substitution ciphers, 8–11
Plaintext attacks, 12
 affine ciphers, 98–99
 chosen; See Chosen plaintext attacks
 known; See Known plaintext attacks
Playfair, Lyon, 18
Playfair cipher
 overview, 18–25
 programming with integer arithmetic, 39
Plugboard, Enigma machine elements, 112, 113, 121
Points, elliptic curve, 451
 addition, 455
 computer implementations and exercises, 484, 485–486
 Diffie–Hellman key exchange, 468
 elliptic curves over real numbers, 452
 modular, determination of number of, 462, 463
 Polish codebreakers, Enigma attack methods, 203, 204
Pollard, John, 317
Pollard p-1 factoring algorithm, 316–319
 comparison with Lenstra’s algorithm, 487
 computer program for, 329
 exercises, 323
Polyalphabetic ciphers, passive attacks on substitution cipher, 12–15
Polynomial complexity, RSA security guarantees, 357
Polynomials
 addition, 388, 398
 computer program for, 411
 exercises, 407
 nibble, 419, 420
 polynomials in \(\mathbb{Z}_p[X] \), 386–387
 AES algorithm operations, 432, 433–434
 Ben-Or’s irreducibility determination algorithm, 410–411
 building finite fields from, 396–399
 with coefficients in \(\mathbb{Z}_p \), 385
 computer programs
 for checking irreducibility, 412
 for extended and regular Euclidean algorithm for, 414
 for multiplication, 413
 congruences in \(\mathbb{Z}_p[X] \) modulo as fixed polynomial, 395–396
 constant, 385
 divisibility in, 389–390
 division, 407, 408
 computer program for, 412
 division algorithm for, 391–395
 nibble operations, 421
 elliptic curves over, 460–462
 Euclidean algorithm, 404–406, 408–409
 fundamental theorem of algebra, 453
 Galois fields, 382, 399–403
 irreducible/irreducibility, 405
 Ben-Or’s irreducibility determination algorithm, 410–411, 414–415
 computer program for checking, 412
 computer programs for checking, 412
 defined, 390
 exercises, 408
 test of, 394, 395
 modular, 402–403, 406, 411, 443
multiplication, 386–387, 388, 398, 407
AES algorithm operations, 433, 434
computer programs for, 412, 413
nibble, 419, 420
in \(\mathbb{Z}_p[X]\), 386–387
in \(\mathbb{Z}_p[X] \mod m\), 413
nibble addition and multiplication, 419, 420
as ring, 388–389
vector representation of, 387–388
Polynomial time algorithms, 309, 355–356
Schoof’s, 468
Polynomial time prime factorization algorithm, 357
Positive integers, number theory, 43
Positive integer solutions, 70, 295, 320
Powers
exercises, 321
modular orders of invertible
modular integers, 301–302
order of powers formula, 305–308
periodicity in, 293
P problems, 24
Prime certification tests, 309
Prime factorization, 24, 309, 357
computer implementations and exercises, 85–86
elliptic curve arithmetic-based
algorithms, 451
Prime factors, 45, 46
elliptic curves, 476
modular inverses, 60–61
Pollard p-1 factoring algorithm, 317, 318
prime factorization program, 85–86
prime number theorem, 294
public key cryptography, 605
RSA cryptosystem, 347, 368
Prime modulus
elliptic curve points, 478
elliptic curves over modular
integers, 459, 460–462
Prime numbers
Diffie–Hellman key exchange, 336, 337
ElGamal cryptosystem, 347
Fermat’s primality test, 309–311
finite fields, 377
generation of, 308–309
industrial-grade, 314
modular arithmetic, 44–46
computer implementations and exercises, 85
factorizations, 44, 45
fundamental theorem of arithmetic, 44
Mersenne primes, 81–82
relatively prime integers, 46–47
square root modulo, 83–84
Wilson’s theorem, 84–85
modular powers, 321
Pollard p-1 factoring algorithm, 316–319
primitive roots, 303
RSA cryptosystem, 340, 342
Sophie Germain primes, 337
tests of primality
Carmichael numbers, 311–312
computer programs for, 327–329
exercises, 323–324
Fermat’s little theorem, 309–311
Fermat’s primality test, 309–311, 327
Miller–Rabin test, 312–316, 327–329
Pollard p-1 factoring algorithm, 316–319
Prime number theorem, 293–295
exercises, 319, 545
prime number generation, 308
Primitive roots
elliptic curve analogues, 466
modular elliptic curves, 461
number theory, 293, 302–305, 547–548
public key cryptography
computer programs for, 326
determination of, 304–305
Diffie–Hellman key exchange, 336, 337
exercises, 321–322
equivalence of, 304
Gauss’s algorithm, 307–308
number theory concepts, 302–305
Private key
Diffie–Hellman key exchange, 469, 470
public key cryptography, 23, 24, 338
ElGamal cryptosystem, 346
Merkle–Hellman knapsack
cryptosystem, 353
Private key cryptosystems, 21
Probabilistic factoring algorithm, RSA
security guarantees, 358
Probabilistic primality test, 308
Probability, 295; See also Randomness
and probability
Probability function, 502, 504, 507
Probability rules, 504
Product
matrix multiplication, 148
nibble, 419
polynomials in \(\mathbb{Z}_p[X]\), 386
rings, 410
Proper subsets, 493
Pseudoprime generating program, 329
Pseudorandom numbers, 27
Public key
ElGamal cryptosystem, 346
Merkle–Hellman knapsack cryptosystem, 353
public key cryptography, 23, 338
RSA security guarantees, 357
Public key cryptography, 21–22, 331–375
computer implementations and exercises, 369–375
definition of, 94
Diffie–Hellman key exchange, 336–337
digital signatures and authentication, 343–345
discrete logarithm problem, review of, 334–335
ElGamal cryptosystem, 345–349
digital signatures with, 347–349
exercises, 360–369
exercise solutions, 550–554, 604–607
features of cryptosystems, 24–25
government controls on cryptography, 331–332
informal analogy for cryptosystem, 331–332
knapsack problems, 349–356
Merkle–Hellman knapsack cryptosystem, 352–356
number theory concepts
orders, 301–302
primitive roots, 302–305
one-way functions, 333–334
quest for complete public key cryptosystem, 337–338
quest for secure electronic key exchange, 332–333
RSA cryptosystem, 338–343
RSA security guarantees, 357–360
Puzzles, Chinese remainder theorem, 67–71

Q
Quality control, 510–511
Quantum computers, 357
Quotient
definition of, 47
division algorithm for \(\mathbb{Z}_p[X]\), 391, 392

R
Rabin, Michael, 312
rand, random integer generation, 40
Randomized encryption
homophones, 106–107
nulls, 104–105
Randomly generated matrix,
computation of invertibility probability, 178–179
Randomness and probability, 501–513
binomial random variables, 511–513
birthday problem, 505–507
conditional probability, 507–509
conditioning and Bayes’ formula, 509–511
pseudorandom number generation algorithm, 27
random variables, 511–513
terminology and axioms, 501–507
Random numbers, computer-generated, 28, 39–41
Random permutations, computer-generated program for generating, 219–220
Random substitution ciphers, 220
Random variables
binomial, 511–513
discrete, 511
Range, functions, 4, 5
RC6, 418
Real numbers
elliptic curves over, 452–454, 478, 483–484
floor function, 40
Rijndael, 418
Rijndael, 418–419

Rings
AES S-box, 444
building finite fields from \(\mathbb{Z}_p[X]\), 391, 392
Rijm, Vincent, 418
Rijndael, 418–419
Rings
AES S-box, 444
building finite fields from \(\mathbb{Z}_p[X]\), 396–399
commutative, 58
congruences in \(\mathbb{Z}_p[X]\) modulo as fixed polynomial, 395–396
exercises, 406–407, 408
finite fields, 378–380, 381, 383, 384
integral domains, 409–410
polynomials in \(\mathbb{Z}_p[X] \) as, 388–389
Ritter, Richard, 111
Rivest, Ronald, 22, 331, 338, 339
Root cubic equation, elliptic curve graphs, 453
Roots
elliptic curves over real numbers, 453
Gauss’s algorithm, 325
matrix, computer implementations and exercises, 174
modular elliptic curves, 461
polynomials in \(\mathbb{Z}_p[X] \), 409
primitive; See Primitive roots
Rosetta stone, 92
rot13 cipher shift, 10
Rotate Nibble operator, 425
Rotors, Enigma machine elements, 112, 113, 120, 121–122
Rotor window, Enigma machine elements, 113
Round constants, AES encryption, 425, 439
Round key function
DES, 267, 269
computer programs for, 288, 289–290
scaled-down, 263, 281
Feistel cryptosystems, 255
Round keys
AES, 422, 424
computer program for, 446
exercises, 441, 442
DES, 259, 265, 271, 282
computer programs for, 287–288, 289
generation of, 259
Round-off errors, 161
Round robin tournaments, application of congruences, 80
Rounds
AES, 421, 422, 440
DES, 258, 260, 261, 264
Feistel cryptosystems, 255
Row matrix, 146
Różycki, Jerzy, 203, 204
RSA (Rivest, Shamir, Adleman) cryptosystem, 24, 273, 339
computer programs for, 370–371, 372
development of, 22
digital signatures, 344–345
mathematical problems providing security, 338
Public key cryptography, 338–343
security guarantees, 357–360
RSA RC6, 418
RSA Security, 45, 294, 345
RSA-640, 327, 372
Russian alphabet, 95
S
Sample space, experiment, 501–503
partitioned, 509–510
reduced, conditional probability, 507
Saxena, Nitin, 309
S-box
AES
computer programs for, 446–447, 448, 449
cryptography, 437, 439
exercises, 441, 443–444
inverse, 430, 448
DES, 267, 268
computer programs for, 288, 289
exercises, 281–282
scaled-down, 261–262, 281, 282
S-box table, AES, 423
Scalar multiplication
computer implementations and exercises, 175
elliptic curve exercises, 480
matrix, 146–147
polynomials in \(\mathbb{Z}_p[X] \), 388
Scalars, defined, 146, 147
Scaled-down AES; See Advanced encryption standard protocol
Scaled-down DES
computer programs for, 287–289
exercises, 281–282
Scaled-down Enigma machines
composition of functions, 120–121
computer programs, 141–143
Scherbius, Arthur, 111
School algorithm, 468
Scytale, 101
Scytale cipher, 101–102, 128, 136–137
Second quotient, division algorithm for \(\mathbb{Z}_p[X] \), 391
Self-cancelling properties, XOR, 255, 429
Self-decryption proof, DES and Feistel cryptosystems, 285
Serpent, 419
Set differences, 494
Sets
basic concepts, 4, 5
basic counting principles, 495–499
binary operations, 377
concepts and notations, 491–495
finite fields, 377
modular elliptic curves, 452
Set theory, probability theory and, 503
Shannon, Claude, 25, 26
Shannon’s properties of diffusion and confusion, 272, 419
Shift cipher, 38, 95
Shift permutation, 189
 Caesar cipher, 10
 one-unit, 119
Shift register, cipher feedback (CFB) mode, 276
Shift Row mapping
 inverse of, 440
 reverse order, 429
Shift Row Transformation, AES
 decryption, 431
 encryption, 422, 424, 428, 429, 436
 exercises, 444–445
Shor, Peter, 357
Signature exponent, ElGamal cryptosystem, 347
Significant digits, computing platforms and, 325; See also Computation issues
Simultaneous congruences, Hindu puzzle, 67–71
Single linear congruence, solving, 66
Singleton set, 492
Singular elliptic curve
 definition of, 452
 graphs, 454
 over modular integers, 460
 over real numbers, 452
Sizes
 matrix, 145
 of modular elliptic curves, 462–463
Sophie Germain primes, 337
Spaces
 frequency analysis-based attacks, 183
 RSA cryptosystem, 340
 substitution ciphers, 10
Spinner, randomized encryption, 104–105
Square (invertible) matrix
 computer implementations and exercises, 175–176
 definition of, 146, 151–153
 determinant computation, 159
 determinant of, 153–155
 general cofactor expansions, 171–172
 inverses of 2x2 matrices, 155–156, 174–175
Square roots
 modular elliptic curves, 461, 462
 modulo m, 83–84
Standards, 2
 Digital Signature Standard (DSS), 345
 encryption; See Advanced encryption standard protocol;
 Data encryption standard
State matrix, Mix Column mapping, 430
State transformations (mappings); See Mapping
Statistical frequency counts, 13–14
Steganography, 100–102
Storage
 two’s complement representation scheme, 245–246
 as vectors or strings, 248
Strassen, Volker, 150
Strassen’s algorithm, 150–151, 173–174, 179
Stream modes, block cryptosystems, 276–279
Strings, 254
 basic concepts, 3
 computer programs for extracting ciphertext data from ciphertext string, 216–218
 XOR operation, 287
 integers in different bases, 248–250
 vector/string conversions, 35–36
String size, AES, 417
Strong avalanche condition, AES, 419
Subblocks, cipher feedback (CFB) mode, 276
Submatrix, 154
Sub Nibble operator, 425
Subsets, 5, 492
Substitution box, DES, 261–262, 267, 268
Substitution ciphers
 Caesar cipher, 9–11
 evolution of codemaking, 102
 cryptosystem components, 95
 homophonic, 107
 steganography, 100–101
 frequency analysis-based attacks, 183–186
 overview, 8–11
 passive attack example, 12–15
 random, computer implementations and exercises, 220
Substitution permutation network, 419
Substitutions
 congruent, 56–57
 partial, computer program for, 215
Subtraction
 algorithm complexity analysis, assessing work required to execute, 246–247
 matrix, 146–147
 rings, 379
Subtraction algorithm with base b expansions, 231–234
Sum
 addition of elliptic curves over \mathbb{Z}_p, 464
 elliptic curve addition, 455
nibble, 419
polynomials in $\mathbb{Z}_p[X]$, 386
Superincreasing weights, knapsack problem, 350–352
computer programs for, 374
exercises, 364–365
Merkle–Hellman knapsack cryptosystem, 352–356
Symbolic Analysis of Relay and Switching Circuits, A. (Shannon), 25
Symbolic computing platforms, 296, 314, 325, 334, 369
elliptic curve operations, 483
Lenstra’s algorithm, 477
public key cryptography, 334
RSA cryptosystem, 341
Symmetric key cryptosystems, 21, 23, 24; See also Private key cryptosystems
definition of, 94
DES development, 95
substitution ciphers, English alphabet, 96
Symmetry
congruency properties, 54
matrix, 156

T

Tables
basic concepts, 3–4
tabular form notation for permutations, 110–111, 220
Tangent line, elliptic curve properties, 453
T-attack, 272–273
Tempest devices, 357
Ternary expansions, 225
Text
integer/text conversions, 36–37
plaintext; See Plaintext
Three-round Feistel systems, 280–281
computer implementations and exercises, 287
self-decryption proof, 285
Time algorithm, School’s, 468
Traité des Chiffres ou Secrètes Manières d’Ecrire (Vignère), 15
Transitivity
congruency properties, 54
divisibility, 44, 68, 389
Transpose of matrix, 156, 171
Transposition ciphers, 101–102
Trapdoor (one-way) function, 333–334, 353
* Treatise on Numerals and Secret Ways of Writing* (Vignère), 15
Tree diagram, counting principles, 496
Trial (experiment), defined, 501
Trigram, 190
Trigraphs, 107
Triple composition, 122
Triple DES, 273–274, 291–292, 333
Trithemius, Johannes, 15
Trivial cycle, 115, 116
Turing, Alan, 206–208
Twofish, 419
Two-round encryption mapping, 541–543
Two-round Feistel systems, 258, 259, 263, 280
Two’s complement representation scheme, 245–246

U

Union, sets, 491, 492–495
Unique factorization, in $\mathbb{Z}_p[X]$, 405
Universal set, 494

V

Vacuously true, 493
van Oorschot, Paul, 273, 617
Vanstone, Scott, 273, 616, 617
Vatican ciphers, 102
Vaudenay, Serge, 356
Vector addition, 457
Vector multiplication, polynomials in $\mathbb{Z}_p[X]$, 388
Vectors, 254
Cartesian product set, 496
conversion programs, 286
dot product formula, 199–200
integers in different bases, 248–250
knapsack problem reformulation, 350
nibble addition and multiplication, 419
polynomial representations, 387–388
rings, 406–407
XOR program, 287
Vector/string conversions, 35–36
Venn diagrams, 492–495, 505
Vernam, Gilbert S., 26
Vernam cipher, 26
Verser, Rocke, 273
Vignère, Blaise de, 15
Vignère cipher, 107
demise of, 187–192
Babbage/Kasiski attack, 188–192
Friedman attack, 192
Friedman attack, 197–201
ciphertext-only, 200–201

Hill cryptosystem with, 166
one-time pad as, 28
overview, 15–18
programming with integer
arithmetic, 38–39
Vignère tableau, 16, 17

W
Waterhouse's theorem, 463, 476
Weak keys, DES, 284
Weights, object; See Object weights,
knapsack problems
Wheatstone, Charles, 18
Wilson's theorem, 84–85
Winograd, Shmuel, 150
Witness, primality test, 309–311, 314
Word length, 10, 240
Word size, 238
Wright, Edward V., 294
Wright, Ernest Vincent, 14

X
XOR operation, 254–255, 383, 407
AES, 428, 445
crcomputer implementations and
exercises, 447, 449
cryptonfire, 427
eexercise, 285
self-cancelling properties, 255, 429

Y
Young, Thomas, 92

Z
Zero, 378
Zero polynomial, 385, 387, 394
Zuse, Konrad, 251, 252
Zygalski, Henryk, 203, 204