
1

1
An Overview of
the Subject

In this chapter we introduce some key definitions and general concepts of
cryptography that will be used throughout the text. A few simple exam-
ples of cryptosystems are provided to help better illustrate the topics. The
chapter also provides a road map of the various parts of the subject and
where they will be developed in the book. Cryptography has a fascinating
history, elements of which punctuate this chapter as well as latter portions
of the text. We point out that the general tone of this chapter is informal,
and some of the preliminary definitions given here are developed more
rigorously in later chapters, after the needed mathematical concepts have
been considered.

Basic Concepts
Cryptography is the science of protecting data and communications. One
of its main components involves communicating messages or information
between designated parties by changing the appearance of the messages
(or data) in ways that aim to make it extremely difficult or impossible for
other parties to eavesdrop on or interfere with the transmission. Other
important aspects include authentication, which allows receiving parties
the means to ascertain that the communication really does come from the
designated sender, and integrity, which, among other things, ensures that
the message received has not been altered. The subject of cryptography is
as old as written languages. There have always been situations where it is
important to convey a confidential message. A spy’s life could depend on
certain messages not being compromised; launch codes for nuclear and
other weapons of mass destruction, if cracked, could cause the demise of a
whole city, a country, or even the world. Keeping data and messages confi-
dential has become an essential and almost daily issue for almost all of us
in our high-tech society. When anyone sends out a personal e-mail, he or
she certainly would like to know all who might be able to read it. A super-
visor or even a curious coworker may have easy access. Cryptography
is vital to electronic commerce, for otherwise it would not be possible
to make credit card purchases over the Internet or to wire money from
a bank to another location. As our point of departure into this exciting
subject, we consider Figure 1.1, which shows the basic idea behind most
cryptosystems.

2 Introduction to Cryptography

The characters Alice and Bob (the communicating parties) and Eve (the
evil eavesdropper) of Figure 1.1 have become standard in cryptographic
literature and are used throughout this book.* Another character—Mallory
(the malicious manipulator)—will be later introduced as one who tries to
fabricate messages or otherwise corrupt communications. As with any sort
of security system, greater levels of security that are desired or required
need more sophisticated systems to prevent breaches by intruders who
must employ more sophisticated means to breach the system. The devel-
opment in this book is given in essentially chronological order, with the
math tools being introduced as they are needed. One general trend is that
as cryptosystems have developed over several centuries, the mathematical
foundations on which they rely have become increasingly sophisticated.

Any cryptographic system must anticipate attacks by hackers who might
try to break the code of the transfer and thus compromise the data integrity.
The advent of high-speed computers has had a tremendous impact on the
standards for what are considered to be effective ciphers or cryptosystems,
which are algorithms for rendering messages unintelligible except to the
designated recipients. A cryptosystem has two parts: encryption, which is
done at the sender’s end of the message and means to put the actual plain-
text (original message) into ciphertext (secret code), and decryption, which
is done at the recipient’s end and means to translate the ciphertext back into
the original plaintext message. Encryption and decryption are done using a
key, or perhaps two keys (one to “lock” the message in the encryption stage
and the other to “unlock” it during decryption), along with algorithms that

* The names in our picture have become folk tradition in cryptography circles. Later, we will
examine a related problem where a different sort of hacker tries to send phony messages
to Bob, while attempting to make him think they came from Alice. Such an individual is
called a “Mallory.”

Hey Bob,

you’ll never

guess what....

Hey Bob,

you’ll never

guess what...

Encryption

Key

Decryption

Key

Plaintext

Alice, sender Bob, intended

recipient

XFLXQR

TCAZRPS

DSGEET...

Ciphertext

Eve, eavesdropper

Plaintext

Figure 1.1 A basic reference illustration for a cryptosystem. Alice, the

sender, wishes to send Bob, the intended recipient, a confidential message.

On Alice’s end, the message gets encrypted before it is sent to Bob, who,

as the designated recipient, will be able to decrypt the message. Eve, the

eavesdropper (a hacker), tries to intercept this message but will not have the

key to decode it.

An Overview of the Subject 3

can perform the encryption and decryption. It can usually be assumed that
hackers will be able to determine the cryptosystem that is used, but with-
out complete knowledge about the corresponding keys, the system should
remain secure. Thus, certain details of the keys must be kept secret.*

Depending on the usage, the consequences of an unauthorized break-in,
and the skill level of anticipated hackers, a cryptosystem may be simple or
may be very sophisticated. High-speed computers have made it possible to
implement extremely sophisticated cryptosystems, but at the same time,
hackers can use powerful computing tools to help them in being able to crack
cryptosystems. Cryptography is a huge industry with many public and pri-
vate companies working hard to keep the technology state-of-the-art and to
keep one step ahead of hackers. The latest technologies in the field depend
heavily on many mathematical tools ranging from abstract algebra and num-
ber theory to probability. The U.S. federal government is, of course, a big
user and consumer of cryptography. Usage comes not only from the defense
and intelligence industries (Pentagon, CIA, FBI, and so forth) but also from
financial and technology industries. The branch in the U.S. government that
is solely dedicated to cryptography is the National Security Agency (NSA).
The NSA constantly and actively recruits people with mathematics and com-
puter science degrees (from bachelor’s degrees to PhDs).

Cryptosystems can be implemented on any alphabet. An alphabet is
any finite set of symbols. Any ordered sequence of letters from a certain
alphabet is called a string (from the alphabet).† For example, QXUZTKM
is a string of length 7 (since it has seven alphabet characters) in the alpha-
bet of the 26 uppercase English letters {A, B, C, …, Y, Z}. Binary strings
(also called bit strings) are strings from the binary alphabet {0, 1}; for
example, 011100 is a bit string of length 6 (since it consists of six charac-
ters). The individual digits in a binary string are called bits. The plaintext
and ciphertext may be represented in different alphabets. Thus, although
it is most convenient to input a plaintext message in a familiar alphabet
(such as English letters and digits), the ciphertext produced by the com-
puter would probably be formed in an alphabet that is efficient for com-
puter architecture and manipulations (such as the binary alphabet).

All cryptosystems require algorithms and/or functions to accomplish
the encryption and decryption processes. Algorithms are simply lists of
instructions (or programs or procedures) designed to accomplish certain
tasks. The concept of a function is also very general, involving rules or for-
mulas that show how to get an associated output for each permissible input
value. Functions can be described in many ways, using graphs, tables,
formulas, or algorithms. For example, a table giving the daily high tem-
peratures (rounded to the nearest degree Fahrenheit) at the Los Angeles
International Airport for every day over the past five years is a function.
The inputs are the days over the past five years, and the outputs are the
corresponding high temperatures. To find the output of this function for a

* Traditionally, cryptography referred to the design of cryptosystems, cryptanalysis to
methods of attacking them, and cryptology to both of these tasks. Increasingly, cryptog-
raphy is replacing cryptology as the main descriptor of the field, and we will adhere to
this convention.

† Like sets, strings can be empty; but since empty strings will be unusual in our work, our
default assumption will be that strings are nonempty unless explicitly stated otherwise.

4 Introduction to Cryptography

given day (over the past five years), we simply look up the temperature on
that day in the table. Since functions are used throughout the subject of
cryptography, we will now provide a formal definition.

Functions

Definition 1.1

A function (or mapping) from a set A (= the set of inputs) to a set B
(= a set containing all possible outputs) is a rule, formula, or algorithm
that assigns to each element a A∈ (an input) a unique element f a B() ∈
(the corresponding output). The element f a() is also called the image
of a under f, and if f a b() ,= we say that f maps a to b. The notation
f A B: → is used to indicate that f is a function from the set A to the
set B. The set A is called the domain of the function, and the set B is
called the codomain. The set of all outputs of f is called the range of f
and is denoted as f A(). Note that the range is a subset of the codomain,
that is, f A B() .⊆

It is helpful to visualize a generic function with a diagram such as the one
shown in Figure 1.2.*

In contrast with calculus courses, almost all of the functions that are
dealt with in cryptography have domains and codomains that are either
finite sets or discrete infinite sets.† For functions involving small domains
and codomains, diagrams can easily be drawn describing their actions;
the following example demonstrates this idea.

Example 1.1

Which of the three diagrams in Figure 1.3 represent(s) functions

from the domain {a, b, c} to the set {1, 2, 3}?

Solution: The rule F is not a function since the input b is assigned

to have two outputs. The other two rules specify functions, since

each element of the domain {a, b, c} is assigned exactly one

output in the codomain.

* In lower-level mathematics classes, students are sometimes taught that a function is just
a formula such as f (x) = x2. What is usually intended is that the domain is taken to be the
largest possible subset A of real numbers for which the formula makes sense (in this case
A = {real numbers}), and so f : A → {real numbers}.

† Unlike continuous infinite sets such as the set of real numbers that contains whole intervals
of numbers, discrete infinite sets can be formed by taking a union of an infinite sequence of
finite sets. For example, binary strings of any fixed length form a finite set. But the set of all
binary strings of finite length, the union of all of the sets of binary strings of length 0, 1, 2, 3,
and so forth, is an example of a discrete infinite set. Here is another distinction. It is always
possible to represent any element of a discrete set with a finite string (in some alphabet),
whereas for continuous infinite sets, this typically cannot be done. For example, there are
many real numbers whose decimal expansions are nonending and nonrepeating, and would
require an infinite string of decimal digits to write down.

An Overview of the Subject 5

We point out two important observations about the functions G and
H of Example 1.1. First, note that G(a) = G(b) = 1, that is, two inputs
are assigned a single output; a function is allowed to do this (but not the
other way around). The function H does not do this: different outputs are
assigned different inputs. Second, note that not every element of the codo-
main of G is an actual output: 3 does not occur as an output, but the
function H does actually realize each element of its codomain as an out-
put. These two properties of H are very important, and they are the given
official designations in the following definition.

One-to-One and Onto Functions, Bijections

Definition 1.2

Suppose that f A B: → is a function.

 (a) We say f is one-to-one if different inputs are always assigned
different outputs; in other words, if two elements x y A, ∈ have
the same outputs (under f): f x f y() (),= then they must be the
same: x = y.

 (b) We say f is onto if every element of the codomain B occurs as an
actual output; in other words, if b is an element of the set B, then
there exists an element a of the domain such that the output of a

is b: f a b() .= In other words, the range equals the codomain,
i.e., f A B() .=

 (c) We say f is bijective, or a bijection, if it is both one-to-one and
onto.

A B

f (A)

a

f (a)

f

A = Domain

 = Input Set
B = Codomain

 = Output Target Set

f (A) = Range

 = Set of Actual Outputs

Figure 1.2 Schematic diagram of a function f: A → B with the output f (a) of

an element in the domain A. The range f (A) (shaded on the right) is a subset

of the codomain B.

1

2

3

1

2

3

a
b
c

a
b
c

a
b
c

1

2

3

F HG

Figure 1.3 Three diagrams assigning elements of the set {a, b, c} to ele-

ments of the set {1, 2, 3}.

6 Introduction to Cryptography

Note that the temperature function mentioned earlier (with domain being
the days over the past five years, codomain being the set of integers
{ , , , , , , , , },− − −3 2 1 0 1 2 3 and rule specified by a table giving the high
temperature at the LAX airport each day) is not a one-to-one function
since there are different days (over the past five years) that had the same
high temperature (that is, two inputs share the same output). This function
is also not onto (Why?).

Example 1.2

Determine whether the following functions are one-to-one and/

or onto:

 (a) F a b c x y z: { , , , , , , } { , , , , , , }→ 0 1 2 23 24 25 defined by

the rule

 F(ith letter of the alphabet) = i – 1.

 This rule is an abbreviation for writing out each of the

26 input/output relations:

 F(a) = 0, F(b) = 1, F(c) = 2, F(d) = 3, etc.

 (b) The function G : {length 4 binary strings} {length 3 binary→
strrings} defined by the rule

 G b b b b b b b()1 2 3 4 1 2 4=

 (i.e., the third binary digit is deleted from the input to

produce the output; for example, G(0010) = 000).

 (c) The function H : {length 3 binary strings} {length 4 binary→

strrings} defined by the rule

 H b b b b b b b()1 2 3 1 2 3= ∗

 where the final bit of the output, b∗, is taken to be 0 if the

first three bits add up to an even number, and 1 if they

add up to an odd number. For example, if b b b1 2 3 = 101,

then b b b1 2 3 1 0 1 2+ + = + + = , which is even, so b∗ = 0,

and thus H(101) = 1010. Similarly, H(100) = 1001.

Solution: Part (a): This function F is both one-to-one and

onto; it merely codes each letter (input) into its uniquely defined

place in the alphabet, less one (output). Thus, no two letters

are assigned the same output (one-to-one), and the codomain

consists exactly of all of the outputs (onto).

Part (b): This function G is onto but not one-to-one. To see

why it is onto, consider any length-3 binary string c c c1 2 3 where

ci = 0 1, or (that is, any element of the codomain), and notice that

it will be the output of G applied to either of the length-4 binary

strings c c c1 2 30 or c c c1 2 31 . The fact that these two different inputs

have the same output shows also that G is not one-to-one.

An Overview of the Subject 7

Part (c): This function H is one-to-one but not onto. To see

that it is one-to-one is easy: if H b b b H c c c() (),1 2 3 1 2 3= this means

that b b b b c c c c1 2 3 1 2 3
∗ ∗= . But for two strings to be the same,

each of the corresponding components must be equal. Just

looking at the first three gives b c b c b c1 1 2 2 3 3= = =, , , which is

tantamount to b b b c c c1 2 3 1 2 3= . To see that H is not onto, notice

that since the fourth bit, b∗, of the output H b b b b b b b()1 2 3 1 2 3= ∗

is completely determined by the input bits, only one of the two

strings b b b b b b1 2 3 1 2 30 1, will be an output. For example, since

H(101) = 1010, the string 1011 will not be an output.

Given any alphabet A, the set of all finite strings in A includes all strings
with characters in A of length 1, 2, 3, and so on, and also includes a single
empty string that contains no characters and so has length 0. We denote
this empty string as ∅. Given two strings σ1 and σ 2 in A, having respective

length 1 and 2, their concatenation σ σ1 2⋅ is the string of length 1 2+
obtained by pasting the string σ 2 at the right end of string σ1.

Exercise for the Reader 1.1

 (a) Is function C : {finite length binary strings} → {finite length
binary strings} defined by C()σ = ⋅1010 σ one-to-one? Is it
onto?

 (b) Determine whether the following function is one-to-one:

 D : {length 3 binary strings} {length 3 binar→ yy strings} defined
by D b b b d d d() ,1 2 3 1 2 3= where d b1 1= and

d
b b

b b
2

1 2

1 2

1

0
=

+

+

⎧
⎨
⎪

⎩⎪

,

,

if is odd

if is even
aand

if is odd

if
d

b b b

b b b
3

1 2 3

1 2 3

1

0
=

+ +

+ +

,

, is even

⎧
⎨
⎪

⎩⎪

Inverse Functions
The one-to-one property of a function is very important when we use
functions in cryptosystems because their processes can be reversed.
Since there is only one input for each realized output, the association can
be reversed; think of a function diagram as in Figure 1.2: when a func-
tion is one-to-one, the arrows can be reversed. If a function f A B: →
is also onto (so a bijection), then every element of the codomain is an
output that corresponds to a unique input, and so we can define a func-
tion from B to A by associating each element b B∈ the corresponding
input under f whose output is b. We call this function the inverse func-
tion of f, and it is denoted as f B A− →1 : . Thus, f b a− =1() if, and only if,
b f a= (). The inverse function simply “undoes” what the function does;
see Figure 1.4.

8 Introduction to Cryptography

Example 1.3

 (a) Letting F be the bijection of Example 1.2(a), determine

the string F F F F F F− − − − − −1 1 1 1 1 16 4 13 4 21 0() () () () () ().

 (b) Consider the function F : { , , , } { , , , }1 2 3 4 1 2 3 4→ defined by

the rule that for each a ∈{ , , , },1 2 3 4 F a() is the remainder

when a3 is divided by 5.* Determine whether the inverse

function F −1 exists, and if it does, explain how it works.

Solution: Part (a): It is helpful to draw a table for the values

of F; see Table 1.3 later in this chapter (but change letters to

lowercase). From such a table, we can easily identify the given

string to be “geneva.”

Part (b): The domain is small enough so that we can compute

all of the values of F rather quickly: Since 1 1 5 0 13 = = ⋅ + , we

get F () .1 1= From 2 8 5 1 33 = = ⋅ + , we get F ()2 3= . Similarly,

the equations 3 5 5 2 4 12 5 43 3= ⋅ + = ⋅ +and lead us to

F ()3 2= and F () .4 4= We now can see that F is a bijection,

and the inverse function F − →1 1 2 3 4 1 2 3 4: { , , , } { , , , } can be

described by reversing the inputs and outputs. But this clearly

results in the same function, that is, F F− =1 .

Substitution Ciphers
We are nicely prepared to define our first cipher, known as a substitution
cipher. Many of us have some experience with such ciphers going back to
our days in elementary school when we wanted to pass notes to some of
our classmates in such a way that if the note was intercepted by the teacher
(or another unintended student), he or she would not be able to read it.

Definition 1.3

A substitution cipher is simply a function F from a plaintext alphabet
P to a ciphertext alphabet C, that is both one-to-one and onto. Thus, for

* The remainder when we divide a positive integer b by 5 is the unique integer r, with
0 5≤ <r , such that b q r= +5 , for some integer q. This is just the usual remainder in long
division that one learned in grade school; we give a much more thorough account of this
topic in the next chapter.

A

a

f(a) = b

f

f –1

B

Figure 1.4 Illustration of the inverse function f –1 : B → A of a bijection f : A → B.

An Overview of the Subject 9

every plaintext letter p P∈ , the function associates a unique ciphertext
letter c F p C= ∈() , such that:

(i) One-to-one condition. Different plaintext letters will always
be associated with different ciphertext letters; i.e., if p p1 2≠
(two letters in P), then F p F p() ()1 2≠ (two letters in C).

(ii) Onto condition. Every ciphertext letter is associated with a
plaintext letter; i.e., if c C∈ , then there is an associated plain-
text letter p P∈ , with c F p= ().

The function F (that specifies the correspondence between plaintext
and ciphertext letters) is called the key of the substitution cipher. More
generally, a key in a certain cryptosystem is some parameter that is suf-
ficient to completely describe the encryption and/or decryption mapping
of any particular instance of the cryptosystem. In some situations, as
with a general substitution cipher, the key and the encryption and/or the
decryption mapping are synonymous, because it is difficult to describe
a general substitution cipher with anything less than a specification of
the encryption mapping. Once the key is known, it is straightforward to
encode plaintext messages, which are strings in the plaintext alphabet P,
into ciphertext, and to decode ciphertext messages back into plaintext.
Thus, the key should be made available only to the sender of the messages
(who needs it in order to encrypt the plaintext message to the ciphertext
message) and the intended recipient (who needs it to decrypt the ciphertext
message back to its original plaintext form).

We give a simple example of a substitution cipher in which both plaintext
and ciphertext alphabets consist of the set of 26 English letters. For added
clarity, we will let the plaintext alphabet be the set of lowercase letters: P =
{a, b, c, …, x, y, z}, and the ciphertext alphabet be the set of uppercase
letters: C = {A, B, C, …, X, Y, Z}.* In cases where the plaintext and cipher-
text alphabets are (essentially) the same, a substitution cipher corresponds
to a rearrangement (or permutation) of the letters of the alphabet. A spe-
cial case is where each letter is shifted a certain number of letters down
the alphabet (where the ciphertext letters A, B, C, … cycle back after Z).
Such substitution ciphers are called shift ciphers. The following example
describes a shift cipher that was used by the Roman emperor Julius Caesar
(100 b.c.–44 b.c.), and has come to be known as the Caesar cipher.

Example 1.4: The Caesar Cipher

Consider the substitution cipher determined by the permuta-

tion of the 26 (uppercase) letters of the alphabet obtained by

shifting each plaintext letter three letters down in the alphabet

* All of the ideas that we present would work equally well for larger alphabets, and in prac-
tice all contemporary encryption devices are able to deal with plaintext involving upper-
and lowercase letters, numbers, punctuation marks, and other symbols. Most modern
computer-based cryptosystems (that are discussed after Chapter 7 of this book) process
plaintext and ciphertext as binary strings (sequences of zeros and ones), integers, or even
objects in more abstract number systems.

10 Introduction to Cryptography

(and recycling back to the beginning of the alphabet when we

pass Z). Thus, the ciphertext letters of a, b, and c are D, E,

and F, respectively. This entire shift permutation is shown in

Figure 1.5.

If Caesar used this cipher to encode his famous quote:

i came, i saw, i conquered

the corresponding ciphertext would be (omitting spaces and

commas):*

LFDPHLVDZLFRQTXHUHG

To decrypt this ciphertext, an intended recipient would simply

need to shift each ciphertext letter backward three letters (see

Figure 1.5). The intended recipient would be privy to the cipher,

and so would be easily able to perform the decryption.

Notice the key of the Caesar cipher—namely, the shift permutation
shown in Figure 1.5—can be used to both encrypt plaintext messages into
ciphertext and also to decrypt ciphertext messages back into plaintext.
More generally, for any substitution cipher determined by a one-to-one
and onto function F P C: ,→ the decryption procedure simply uses the
inverse substitution function F C P− →1 : , a table that can be obtained by
simply reversing the arrows of the table for F (or in Figure 1.5 by revers-
ing the arrows). Notice that the resulting inverse function of the forward
shift by three letters is a backward shift by three letters. If we know we
are dealing with a shift cipher, the key can be abbreviated simply by giv-
ing the number κ > 0 of letters that we shift the plaintext letters down the
alphabet to obtain the corresponding ciphertext letters. Thus, the key for
the Caesar (shift) cipher is κ = 3.†

* Preserving spaces, either directly or by means of an additional ciphertext character,
would be easily detected and would render any substitution cipher much less secure since
it would convey complete information on word lengths of the plaintext.

† Note that when κ = 13, the shift cipher is its own inverse (i.e., it is self-decrypting). This is
the famous “rot13” cipher that was used in the early days of the Internet. It was discovered
in 1999 that this low-security system was actually used by a major international e-mail
provider to store user passwords.

a b c

A

jihgfed

J K LG IHFEDCB M

N ZYXV WUTSRQPO A CB

k r y zxwvutsqpol m n

(plaintext)

(CIPHERTEXT)

Figure 1.5 Schematic diagram of the shift permutation associated with

the Caesar cipher. Each (lowercase) plaintext letter is simply shifted three

letters forward in the alphabet to obtain the corresponding ciphertext.

An Overview of the Subject 11

Shift ciphers and generalizations of it are most naturally described in
terms of modular integers and their arithmetic, and these concepts are
developed in the next chapter. More sophisticated ciphers and the ability
to program them for computers rely on arithmetic in other number sys-
tems such as matrices (Chapter 4), various bases (Chapter 6), finite fields
(Chapter 10), and most recently, an interesting arithmetic involving certain
points that lie on special curves known as elliptic curves (Chapter 12).

Before the age of computers, mechanical devices and machines were cre-
ated for the sole purpose of encrypting and decrypting messages with respect
to particular cryptosystems. Thus, rather than simply exchanging keys for
the cryptosystem, designated parties would all have the same cryptographic
devices (which, of course, were kept very secure). A very simple shift cipher
device was created by the Confederates for encryption/decryption during the
U.S. Civil War, showing that devices such as Caesar’s cipher remained in
serious use for nearly two millennia. A photograph of a Confederate cipher
disk is shown in Figure 1.6.* Only five such original devices are known to
exist today; one is on display at the NSA museum in Fort Meade, Maryland.
Such mechanical cryptosystems reached their pinnacle with the notorious
German Enigma machines, which were extremely sophisticated mechanical
and electric devices. We return to this interesting era of history in Chapter 3.

Exercise for the Reader 1.2

 (a) Find the ciphertext for the plaintext message: “Meet the ice-
man at noon,” using the shift cipher with a shift of 12 letters
down the alphabet.

 (b) The following ciphertext was encrypted using the shift cipher of
part (a):

VQZWUZEUEMFGDZOAMF

 Find the original plaintext message.

* We kindly acknowledge the Confederate Secret Service Camp 1710 for permission to
include this photograph (http://home.earthlink.net/~cssscv/).

Figure 1.6 A Confederate cipher disk.

12 Introduction to Cryptography

Attacks on Cryptosystems
Let us now briefly digress to the other side of the game. How would
eavesdropper Eve be able to crack a substitution cipher? Generally, it is
safe to assume that the intruder has some information about the type of
cryptosystem used, for example, a substitution cipher. Depending on what
else Eve knows, there are several different approaches. Some common
approaches to eavesdropping, or passive attacks, in a cryptosystem are
described in general in the following definition. We remind the reader that
there are other ways that a cryptosystem can be compromised, for exam-
ple, by attempting to modify messages or sending an encrypted message
pretending to be from someone else. Such an intrusion would be called an
active attack, since it attempts to change or corrupt the data, and would
be done by a Mallory (rather than an Eve). We address active attacks later
in this chapter.

Definition 1.4 Types of Passive Attacks on a Cryptosystem

We differentiate the various attacks that Eve can make depending on
what information she has about the cryptosystem.

 (a) If Eve has only a string (or strings) of ciphertext, her attack
would be termed ciphertext only.

 (b) If Eve has both a string (or strings) of ciphertext and the cor-
responding plaintext, it is called a known plaintext attack.

 (c) In a chosen plaintext attack, Eve would have temporary
access to the encryption system, be able to use it to encrypt
some plaintext strings of her choice, and see the corre-
sponding ciphertext strings.

 (d) In a chosen ciphertext attack, Eve has temporary access to
the decryption machine and could use it to decrypt some
ciphertext strings of her choice (perhaps ones that she has
previously intercepted).

Example 1.5: Passive Attacks on a Substitution Cipher

We discuss how each type of passive attack could be imple-

mented on a substitution cipher.

Since substitution ciphers are monoalphabetic ciphers, mean-

ing that each plaintext character is always encrypted to the

same ciphertext character, a chosen plaintext or a chosen

ciphertext attack could easily reveal the whole system. For

example, in a chosen plaintext/ciphertext attack, if we simply

encrypted the string “abcd … xyz,” we would have the entire

key. If the system was a forward shift cipher (and we had this

information), we would only need to encrypt/decrypt a single

letter—say, “a”—to determine the key. We will soon intro-

duce ciphers that are polyalphabetic, meaning that plaintext

An Overview of the Subject 13

characters may encrypt to different ciphertext characters at

different instances. Such a naïve approach as above will not

suffice for a chosen plaintext/ciphertext attack on polyalpha-

betic ciphers.

For a general substitution cipher, a known plaintext attack

would tell Eve exactly how the letters appearing in the known

plaintext are encrypted. If we were dealing with a shift cipher,

then, as above, the information about a single plaintext charac-

ter would determine the entire key.

Finally, we move on to discuss ciphertext-only attacks,

which are typically the most difficult. If it is known, however,

that we are dealing with a shift cipher, then since there are

only 26 keys (25 actually), the brute-force approach of sim-

ply trying each of them to decode a given ciphertext (until it

produces something that makes sense) could easily be imple-

mented (on a computer), and this would completely determine

the key. For a general substitution cipher, however, there are

too many possibilities to check for a brute-force approach to

be feasible, even using supercomputers. Indeed, to see how

many different one-to-one and onto substitution functions

F P C: → there are from the 26-letter English plaintext alpha-

bet P to another set C (the ciphertext alphabet) of the same

size, we note that there are 26 choices for F (a), and after this

is specified—say, F (a) Q= —there will then be 25 choices for

F(b) (that is, all ciphertext letters except Q, since it was already

used); once one is specified, there will be 24 choices for F(c),

and so on, until we get to F(z), when there will be only one

remaining choice. It follows from the multiplication principle,*

that the total number of substitution functions F P C: → is

26 25 24 3 2 1⋅ ⋅ ⋅ ⋅ ⋅ ⋅ . This product is abbreviated as 26! and

is read as “26 factorial.”† Since 26 4 0329 1026! ,= × even

if we had a computer that could check 1 trillion permutations

per second, since there are “only” 3 1536 107. × , seconds in

a year, it would require over 10 billion years—over twice the

age of the Earth, to have this (fast) computer check through

all permutations.

A much more effective tool in a ciphertext-only attack, or to

use after one has already made use of a known plaintext attack

but still has not completely determined the cipher, is statisti-
cal frequency counts. The idea of statistical frequency counting

methods relies on the fact that some letters tend to occur more

frequently in written English than others. Many tables have been

* The multiplication principle is a very useful principle for counting. In its general form,
it states that if we have a process involving a finite sequence of choices: choice #1 has k1
possible options, choice #2 has k2 possible options, choice #3 has k3 possible options, and
so on, then the total number of outcomes of this sequence of choices is the product of the
numbers of options: k k k1 2 3⋅ ⋅ ⋅ .

† In general, if n is any positive integer, n! (n factorial) is defined to be the product of all
positive integers that are less than or equal to n; i.e., n n n n! () () .= ⋅ − ⋅ − ⋅ ⋅ ⋅ ⋅1 2 3 2 1

14 Introduction to Cryptography

published on this; for example, Table 1.1 shows the frequencies

that were computed by Beker and Piper [BePi-82].*

Thus, e is by far the most frequently appearing letter (nearly

13% of all characters encountered in written English tend to

be e’s). Although it is possible to create exceptional passages

which violate these frequencies,† they tend to be very useful

in ciphertext-only attacks. Thus, in a long ciphertext (from

a substitution cipher), if a certain character appeared most

often—or better yet, close to the 12.7% frequency of e—we

would predict that this letter is the encryption of e. We could

continue “guessing letters” in this fashion. Setting it up like a

game of hangman, we could sometimes guess new letters sim-

ply by completing words. Apart from single letters, we can also

use the fact that certain two-letter and three-letter combina-

tions occur more frequently than others. For example, the most

common two-letter combinations are (more common items

listed first) th, he, in, er, an, re, ed, on, es, st, en, at, and to,

and the most common three-letter combinations are the, ing,

and, her, ere, ent, tha, nth, and was. Larger portions of cipher-

text tend to make such statistical methods more effective.

The first polyalphabetic ciphers were created in the 14th and 15th cen-
turies. Since cryptosystems were in constant use for military and dip-
lomatic issues, new developments were sometimes kept as carefully
guarded secrets by the ruling governments. Scientists who worked in the

* Of course, there will be variations in frequencies depending on the text corpus being
examined. For example, the distributions in e-mails, brief text messages, and computer
codes would each have distinguishing characteristics. But for most written English that is
not completely informal, the distribution given in Table 1.1 works remarkably well.

† In 1939 an entire novel, Gadsby, was written by Ernest Vincent Wright and did not con-
tain the letter e; it had over 50,000 words. Unfortunately, Wright died (at age 66) on the
day his book was published, so he never saw it in print.

TABLE 1.1 Frequencies of the Letters of the English Alphabet

Letter Probability Letter Probability

a .082 n .067

b .015 o .075

c .028 p .019

d .043 q .001

e .127 r .060

f .022 s .063

g .020 t .091

h .061 u .028

i .070 v .010

j .002 w .023

k .008 x .001

l .040 y .020

m .024 z .001

An Overview of the Subject 15

field were, of course, made to understand that even if they were to make
a groundbreaking discovery, they could not expect to enjoy any fame, let
alone any public recognition for it.

The Vigenère Cipher
A prototypical story exhibiting such characteristics concerns the so-called
Vigenère cipher. Blaise de Vigenère* (Figure 1.7) described this cipher in
his authoritative book on cryptography, Traicté des Chiffres ou Secrètes
Manières d’Escrire† (first published in 1586). In it he explained that in
the development of his cipher, many of the ingredients came from promi-
nent cryptographers of the recent past; the table was invented by German
Johannes Trithemius (1462–1516) and the keyword idea was introduced
in a 1553 pamphlet by Italian Giovanni Battista Bellaso. Vigenère’s addi-
tional contribution to the method had to do with the way in which the key
was implemented. Nonetheless, it was through Vigenère’s influential book
that the method became widely known and hence attributed to him. The
Vigenère cipher was easy to implement and many practitioners became
confident in its security; it was used extensively up through the mid-19th
century. In fact, it earned the name le chiffre indéchiffrable (“the unbreak-
able cipher”). It took a full three centuries for the Vigenère cipher to finally
meet its demise. We now explain how the cipher works. In Chapter 5 we
show its vulnerability to an ingenious ciphertext-only attack.

* Vigenère was born in the town of Saint-Pourçain, the son of a French nobleman. He
received his primary education in Paris, after which at age 17 he began his diplomatic
career as an assistant to the secretary of state of Francis I. His interest in cryptography
began during some long-term diplomatic visits to Italy, beginning at age 26, where he met
several prominent Italian cryptographers and began reading books on the subject. After
retiring as a diplomat at age 47, he spent much of his retirement working on cryptography
and he wrote over 20 books on the subject.

† The title of Vigenère’s book is in old French (before the Academie Française codified
spelling), akin to Shakespearian English. Translation: Treatise on Numerals and Secret
Ways of Writing.

Figure 1.7 Blaise de Vigenère (1523–1596), French diplomat and

cryptographer.

16 Introduction to Cryptography

Definition 1.5 The Vigenère Cipher

The Vigenère cipher is determined by a key that can be any string of
letters of the English alphabet, along with the Vigenère tableau, which
is shown in Table 1.2. To encode a plaintext message, we work our way
from left to right. For each plaintext character, we use the correspond-
ing character of the key, and locate the key character’s row (the key
row) of the Vigenère tableau. The corresponding ciphertext character
will be directly below the plaintext character in this key row. If and
when the key characters are used up, we recycle back to the start of the
key and continue until the plaintext is encoded.

To decode a ciphertext message, we also work from left to right
using one key character for each ciphertext character. This time, the
key tells us the key row in which we locate the ciphertext character, and
the corresponding plaintext character will be the letter on the top of the
corresponding column.

Example 1.6

 (a) Use the Vigenère cipher to encode the message “Vive la

France,” using the keyword “money.”

 (b) Given that the Vigenère cipher of part (a) was used to

produce the ciphertext:

NFVREAIGXFQUHMJXCGMLQ

 find the original plaintext message.

Solution: Part (a): To encode the first plaintext letter v, the key

row would be the m-row (first letter of the key), and the corres-

ponding ciphertext character would be directly below the v-column,

that is, H. (This process is shaded in Table 1.2.) Similarly, to

encode the second letter i of plaintext, we look in the o-row under

i to get W. We continue in this fashion. Note that when we get to

the sixth plaintext character a (and again at the 11th plaintext

character c), we would recycle back to the beginning of the key-

word (so use the m-row). The complete encryption is thus:

plaintext: v i v e l a f r a n c e
keyword: m o n e y m o n e y m o
ciphertext: H W I I J M T E E L O S

Notice that the repeated instances of plaintext letters v, e,

and a encrypt to different letters; this is in sharp contrast to

substitution ciphers!

Part (b): To decode the first ciphertext letter N, we search for

the location of N in the m-row of Table 1.2 (m is the first letter

of the key “money”). Since N appears in the b-column of Table 1.2,

the first plaintext letter is b. In the same fashion since the second

ciphertext letter F appears in the r-column of the o-row of Table 1.2,

An Overview of the Subject 17

TA
BL

E
1.

2
V

ig
en

èr
e

Ta
bl

ea
u

P
la

in
te

xt
 L

et
te

rs

a
b

c
d

e
f

g
h

i
j

k
l

m
n

o
p

q
r

s
t

u
v

w
x

y
z

a
A

B
C

D
E

F
G

H
I

J
K

L
M

N
O

P
Q

R
S

T
U

V
W

X
Y

Z

b
B

C
D

E
F

G
H

I
J

K
L

M
N

O
P

Q
R

S
T

U
V

W
X

Y
Z

A

c
C

D
E

F
G

H
I

J
K

L
M

N
O

P
Q

R
S

T
U

V
W

X
Y

Z
A

B

d
D

E
F

G
H

I
J

K
L

M
N

O
P

Q
R

S
T

U
V

W
X

Y
Z

A
B

C

e
E

F
G

H
I

J
K

L
M

N
O

P
Q

R
S

T
U

V
W

X
Y

Z
A

B
C

D

f
F

G
H

I
J

K
L

M
N

O
P

Q
R

S
T

U
V

W
X

Y
Z

A
B

C
D

E

g
G

H
I

J
K

L
M

N
O

P
Q

R
S

T
U

V
W

X
Y

Z
A

B
C

D
E

F

h
H

I
J

K
L

M
N

O
P

Q
R

S
T

U
V

W
X

Y
Z

A
B

C
D

E
F

G

i
I

J
K

L
M

N
O

P
Q

R
S

T
U

V
W

X
Y

Z
A

B
C

D
E

F
G

H

j
J

K
L

M
N

O
P

Q
R

S
T

U
V

W
X

Y
Z

A
B

C
D

E
F

G
H

I

k
K

L
M

N
O

P
Q

R
S

T
U

V
W

X
Y

Z
A

B
C

D
E

F
G

H
I

J

l
L

M
N

O
P

Q
R

S
T

U
V

W
X

Y
Z

A
B

C
D

E
F

G
H

I
J

K

m
M

N
O

P
Q

R
S

T
U

V
W

X
Y

Z
A

B
C

D
E

F
G

H
I

J
K

L

n
N

O
P

Q
R

S
T

U
V

W
X

Y
Z

A
B

C
D

E
F

G
H

I
J

K
L

M

o
O

P
Q

R
S

T
U

V
W

X
Y

Z
A

B
C

D
E

F
G

H
I

J
K

L
M

N

p
P

Q
R

S
T

U
V

W
X

Y
Z

A
B

C
D

E
F

G
H

I
J

K
L

M
N

O

q
Q

R
S

T
U

V
W

X
Y

Z
A

B
C

D
E

F
G

H
I

J
K

L
M

N
O

P

r
R

S
T

U
V

W
X

Y
Z

A
B

C
D

E
F

G
H

I
J

K
L

M
N

O
P

Q

s
S

T
U

V
W

X
Y

Z
A

B
C

D
E

F
G

H
I

J
K

L
M

N
O

P
Q

R

t
T

U
V

W
X

Y
Z

A
B

C
D

E
F

G
H

I
J

K
L

M
N

O
P

Q
R

S

u
U

V
W

X
Y

Z
A

B
C

D
E

F
G

H
I

J
K

L
M

N
O

P
Q

R
S

T

v
V

W
X

Y
Z

A
B

C
D

E
F

G
H

I
J

K
L

M
N

O
P

Q
R

S
T

U

w
W

X
Y

Z
A

B
C

D
E

F
G

H
I

J
K

L
M

N
O

P
Q

R
S

T
U

V

x
X

Y
Z

A
B

C
D

E
F

G
H

I
J

K
L

M
N

O
P

Q
R

S
T

U
V

W

y
Y

Z
A

B
C

D
E

F
G

H
I

J
K

L
M

N
O

P
Q

R
S

T
U

V
W

X

z
Z

A
B

C
D

E
F

G
H

I
J

K
L

M
N

O
P

Q
R

S
T

U
V

W
X

Y

No
te
:

Th
e

26
 c

ol
um

ns
 (

la
be

le
d

a
th

ro
ug

h
z)

 c
or

re
sp

on
d

to
 p

la
in

te
xt

 c
ha

ra
ct

er
s,

 t
he

 2
6

ro
w

s
(l

ab
el

ed
 a

 t
hr

ou
gh

 z
)

co
rr

es
po

nd
 t

o
ke

y
ch

ar
ac

te
rs

,
th

e
up

pe
rc

as
e

le
tt

er
s

in
si

de
 a

re
 c

ip
he

rt
ex

t

le
tt

er
s.

 F
or

 e
xa

m
pl

e,
 t

he
 s

ha
de

d
v-

co
lu

m
n

co
rr

es
po

nd
s

to
 t

he
 p

la
in

te
xt

 le
tt

er
 v

, t
he

 s
ha

de
d

m
-r

ow
 c

or
re

sp
on

ds
 t

o
th

e
ke

y
ch

ar
ac

te
r

m
, a

nd
 w

he
re

 t
he

y
in

te
rs

ec
t

gi
ve

s
th

e
co

rr
es

po
nd

in
g

ci
ph

er
te

xt
 c

ha
ra

ct
er

 H
.

18 Introduction to Cryptography

the second plaintext letter is r. Continuing this process, recycling

the keyword “money,” we arrive at the following decryption:

ciphertext: N F V R E A I G X F Q U H M J X C G M L Q
keyword: m o n e y m o n e y m o n e y m o n e y m
plaintext: b r i n g o u t t h e g u i l l o t i n e

Exercise 1.3
 (a) Use the Vigenère cipher to encode the message “Code blue

alert,” using the keyword “dijon.”

 (b) Given that the Vigenère cipher of part (a) was used to produce
the ciphertext:

EZNOXRCCOGPQMBVJPC

 find the original plaintext message.

Exercise 1.4
 (a) Explain how the decryption of a Vigenère cipher can be realized

as an encryption of a Vigenère cipher with another keyword.

 (b) Find the keyword for the Vigenère cipher corresponding to the
decryption process of the Vigenère cipher of Example 1.6.

The Playfair Cipher
Our next example is the first historically documented example of what is
known as a block cipher. In a block cipher, letters are grouped into same-
sized blocks, and these plaintext blocks are processed together to form the
corresponding blocks of ciphertext in a way that changing a single letter
in a plaintext block can potentially change other letters in the correspond-
ing ciphertext block. It was created in the mid-19th century by the British
scientist Sir Charles Wheatstone. It is known as the Playfair cipher, after
Baron Lyon Playfair, who helped to promote its use by the British gov-
ernment in its South African (Boer) wars. It continued to be used by the
British military through World War I.*

* Sir Charles Wheatstone (1802–1875) was a British scientist and prolific inventor most
famous for developing the Wheatstone bridge, a device for measuring resistances in elec-
tric circuits. He also invented a telegraph before Samuel Morse—an achievement for
which he was knighted; a musical instrument (the concertina); and a three-dimensional
image display device (the stereoscope). Cryptography was one of his hobbies that he
shared with his friend Baron Lyon Playfair (1818–1898), who lived across London’s
Hammersmith Bridge. They took Sunday walks together where they worked on cracking
codes. Their dispositions were quite different. Wheatstone was so extremely shy that,
although appointed as a professor, he rarely gave public lectures. In contrast, Playfair,
also a scientist, was a public figure who served in an assortment of official roles includ-
ing as Speaker in the House of Commons and as president of the British Association of
Advancement of Science. He had direct access to many policymakers and was able to
convince them to adopt the Playfair cipher.

An Overview of the Subject 19

Definition 1.6 The Playfair Cipher

We start with a key, which can be any word. To illustrate, we use “bas-
ketball” for the key. Repeated letters of the key are removed; in our
example, we get “basketl.” The letters of the reduced word are then
deployed into a 5 5× array (starting from the upper left and proceeding
in reading order), and the remaining spaces of the array are filled with
the remaining letters of the alphabet, except that i and j are treated as a
single letter. In our example the array would be:

b a s k e
t l c d f
g h ij m n
o p q r u
v w x y z

Encryption scheme: Given a plaintext message, for example,

the iceman will arrive at midnight

we group the letters into adjacent pairs, but if any pair has the same two
letters, we insert an x between them and regroup.

th ei ce ma nw il la rx ri ve at mi dn ig ht

In case there is an odd number of letters, we would append an addi-
tional x at the end to complete the last pair.

Each pair of letters is encrypted using the above 5 5× array depend-
ing on which of the following three cases is applicable:*

Case 1. The two letters are not in the same row or column of the
array. In this case, we replace each letter with the letter in its
row that is in the column of the other letter. In our example,
the first pair th falls into this case, so t gets replaced by l, and
h gets replaced by g, so the pair gets encrypted as lg.

Case 2. The two letters are in the same row. In this case, we replace
each letter with the letter to its immediate right, cycling back
to the beginning of the row if the letter is all the way on the
right. In our example, the pair ig falls in this case, so it gets
encrypted as mh.

Case 3. The two letters are in the same column. In this case,
we replace each letter with the letter immediately below it,
cycling back to the top of the column if the letter is all the way
at the bottom. In our example, the pair la falls in this case, so
it gets encrypted as hl.

* As in the Vigenère cipher, rows are horizontal segments of the table, and columns are
vertical segments.

20 Introduction to Cryptography

Continuing with the remaining pairs, we obtain the sequence:

lg sn fs hk hz hc hl qy qm z bbl nm fm mh gl

and thus the ciphertext is

LGSNFSHKHZHCHLQYQMZBBLNMFMMHGL

The decryption process is accomplished by reversing the above pro-
cess. First go through the pairs of letters according to their cases (in
cases 2 and 3, the replacements are done with the letters immediately
to the left or above), then remove any redundant x’s to recover the origi-
nal message.

Exercise for the Reader 1.5

 (a) The Playfair cipher is used with keyword “barcelona” to encrypt
the message “Meet agent Yullov at the Auberge Restaurant.”
Find the ciphertext.

 (b) The Playfair cipher of part (a) was used to produce the follow-
ing ciphertext:

 MAXHNVGLBERCCXSIHBXSGBBCACMRDERQRZ

 Decode this message.

Although it is more secure than substitution ciphers, the Playfair cipher is
susceptible to ciphertext-only attacks by doing statistical frequency counts
of pairs of letters, since any pair of letters will always get encrypted in the
same fashion. But since there are 26 6762 = such ordered pairs of letters and
the distinctions are less pronounced than those for single-letter statistics, a
ciphertext-only attack would typically require significantly larger portions
of ciphertext. Also, short keywords make the Playfair cipher much easier
to crack (since the portion of the array after the keyword is much more
predictable). For more details on the cryptanalysis of the Playfair cipher, the
interested reader may consult [Gai-89]. More sophisticated block ciphers
are often naturally developed in terms of matrices, and Chapter 4 presents
all of the properties about matrices that we will need.

The 20th century saw a proliferation of ever more sophisticated block
cryptosystems that required special mechanical and/or electric devices
to use. These systems continued to evolve into the computer age. In
Chapter 7 we develop the Data Encryption Standard (DES), which was
a system adopted in 1977 by the U.S. government to address the growing
cryptographic needs of business and industry. The encryption process of
DES involved 16 complicated rounds of processing blocks consisting of
binary strings (zeros and ones) of size 64. The details are quite compli-
cated, involving various substitutions, permutations, and some other func-
tions that we will explain later. This is a “computer-only” system that is
unfeasible for hand calculations. The DES system has a high degree of

An Overview of the Subject 21

entropy, meaning that minor changes in the plaintext can produce radi-
cally different ciphertexts. The system was in widespread worldwide use
for nearly 30 years. With increasing computer speeds and new cryptanaly-
sis methods being developed, it started to become apparent that a more
secure system was required, and this led to the Advanced Encryption
Standard (AES) system in 2002. Whereas the DES, although quite com-
plicated, relied on rather basic mathematical functions and operations,
the AES is based on arithmetic in an abstract number system called a
finite field. We discuss finite fields in Chapter 10 and develop the AES in
Chapter 11.

All of the cryptosystems described above and all of the other ones that
we did not mention dating before the 1970s shared the common disadvan-
tage that they are so-called symmetric key (or private key) cryptosystems.
This simply means that the decryption key and process are essentially the
same as the encryption key process (perhaps with certain elements of the
process being reversed). The ramification is that the key must be provided
to both the sender and recipient so that secure communication can take
place, and of course, the keys must be kept out of reach from any antici-
pated hackers.

Most experts had believed that there was no way around this sym-
metric key concept; in other words, if one knows the encryption scheme,
then one should be able to figure out how to reverse the process and thus
be able to decrypt any message sent under the same cryptosystem. One of
the main drawbacks of all symmetric key cryptosystems is the fact that
in order for such a system to be employed, the keys must be distributed
to all participating parties before any secure communication can take
place. This task by itself is often difficult or impractical. Such drawbacks
can now be circumvented thanks to a remarkable revolution in cryptog-
raphy known as public key cryptography or asymmetric key cryptog-
raphy that occurred in the 1970s. The discovery was first published in
a groundbreaking 1976 paper by American cryptographers Whit Diffie
and Martin Hellman [DiHe-76].* Although Diffie and Hellman did not
provide a complete practical implementation of a public key crypto-
system, they provided an important key exchange protocol (the Diffie–
Hellman key exchange) by which two remote parties could establish
a secure key using public (insecure) channels. Inspired by the Diffie–
Hellman paper and the need for a practical cryptosystem implementation

* Merkle and Hellman later collaborated to develop one of the first public key cryptosys-
tems; it is discussed, with others, in Chapter 10. Bailey Whitfield (Whit) Diffie went
straight from earning his B.S. degree (1965) in mathematics at MIT to a job at the MITRE
Corporation, where he became very interested in cryptography. This interest motivated
him to accept a position four years later at Stanford’s artificial intelligence laboratory.
Martin E. Hellman earned his B.S., M.S., and Ph.D. degrees in electrical engineering
from New York University. After completing postdoctoral positions at IBM and MIT, he
moved on to take an academic position at Stanford in 1971, where he met Diffie. Both
received numerous accolades for their pioneering work, including an honorary doctorate
for Diffie from the Swiss Federal Institute of Technology. Hellman remained at Stanford
until his retirement, where he had an illustrious career with continuous strong research
activity and as an award-winning teacher. Diffie worked for most of the rest of his career
in industry and currently serves as a vice president and chief security officer at Sun
Microsystems.

22 Introduction to Cryptography

of their concept, MIT scientists Ronald Rivest, Adi Shamir, and Leonard
Adleman invented their RSA cryptosystem* in 1978. This has turned
out to be one of the most important and widely used public key cryp-
tosystems, and for their ingenious achievement, the three were awarded
the Turing Award in 2002. The Turing Award is often referred to as the
Nobel Prize in computer science.

The concept of public key cryptography had actually been discovered
by British cryptographer James Ellis (Figure 1.9)† in the late 1960s, and the

* It was in their RSA paper [RiShAd-78] that the characters “Alice” and “Bob” were intro-
duced as permanent fixtures in the cryptography saga.

† James Ellis was born in Britain and studied physics at Imperial College in London. After
college, his first job was with the Post Office Research Station (which had an active cryp-
tography team), and he was subsequently recruited in 1952 by the GCHQ (which had
previously been Bletchley Park). His discovery of public key cryptography was made in
the late 1960s, apparently motivated by his reading of a World War II-era paper on the
concepts of adding/subtracting random noise to encrypt voice communications. Ellis did
not have a sufficient mathematical background to adapt his concept into a practical algo-
rithm. Clifford Cocks had a very strong mathematical background to nicely complement
Ellis’s strengths. He won the silver medal at the International Mathematical Olympiad
as a high school student and went on to study mathematics at Cambridge, and then to do
graduate work in number theory at Oxford. As a graduate student, he was recruited by
GCHQ in 1973, and after learning of Ellis’s public key discovery, he invented, in his first
year at GCHQ, the public key cryptosystem that was later known as RSA. It was not until
1997 that the GCHQ allowed information about these discoveries to be made public. This
dissemination was made through a public lecture by Cocks in that same year. The timing
was unfortunate, since Ellis had passed away one month before this talk.

Figure 1.8 American cryptographers Martin Hellman (1945–) (middle),

and Whit Diffie (1944–) (right), pictured with Ralph Merkle (1952–). With

permission of Chuck Painter/Stanford News Service.

An Overview of the Subject 23

RSA implementation of it by Clifford Cocks (Figure 1.10) in 1973, while
they were employed at the Government Communications Headquarters
(GCHQ), the British analogue of the United States’ NSA. The latter scien-
tists did not receive any recognition for their discoveries until 1997, when
the British government decided to declassify the information. Such stories
are typical of many of the unsung heroes of cutting-edge cryptography,
who often are required (by their governments) to keep a tight lid on their
discoveries as matters of national security.

We will enter into the technical details of public key cryptography in
Chapter 9, but it will be helpful to first give a superficial overview: Each com-
municating party (or individual) has two keys, a public key and a private
key. Unlike with symmetric key cryptography, it is not feasible to obtain the
private key from knowledge of the public key. The directory of public keys
is made available to the general public (including Eve and Mallory), while
all parties keep their private keys only to themselves. When Alice sends
a message to Bob, she encrypts the message using Bob’s public key. Only
Bob, who has the corresponding private key, will be able to decrypt Alice’s
message. Apart from removing the prerequisite key distribution issue,

Figure 1.9 James H. Ellis (1924–1997), British cryptographer.

Figure 1.10 Clifford C. Cocks (1950–), British cryptographer.

24 Introduction to Cryptography

public key cryptography also greatly reduces the number of keys needed.
For example, if we had a network of one million parties, with a symmetric
key cryptosystem, each pair would need a separate key exchanged before
communications could take place. This would amount to half a trillion keys,
all of which need to be securely transmitted—this is a logistical nightmare.
A public key system, on the other hand, would require only two million
keys, none of which would need to be securely transmitted.

Basically, public key cryptography translates the difficulty of cracking
into the system (by determining a private key from public key registries) into
the difficulty of solving certain notoriously difficult mathematical problems,
whose “inverse” problems are much easier to solve. For example, the RSA
system, to be discussed in Chapter 9, is based on the difficulty of factoring
large positive integers. The inverse problem is simply multiplying large posi-
tive integers, which has always been easy. We will learn much more about
prime numbers and the associated number theory in Chapter 8, which also
addresses the important practical problem of generating large prime num-
bers (since they are needed for many public key cryptosystems). Encryption
is based on the easier inverse problem, whereas unauthorized decryption
would be based on the computationally infeasible problem. Using such prob-
lems that have been well known and actively researched for a long time adds
to the confidence of the security of such a system. Any of these public key
systems are subject to faltering upon any new discovery of efficient algo-
rithms for the intractable problems on which they are based. Although it has
not been proved, for example, that an efficient algorithm for prime factoriza-
tion cannot exist, it is the general consensus that this is the case. Other public
key cryptosystems are based on a very special class of intractible problems
known as NP complete problems.* We will introduce knapsack cryptosys-
tems, which are based on the NP complete knapsack problem. It is interest-
ing to point out that because of the increased importance that such problems
now have due to the widespread use of cryptosystems that are based on them,
the NSA strictly regulates certain areas of research relating to such problems.
American scientists who make any novel discoveries in areas relating to pub-
lic key cryptography need to clear them with the NSA before announcing
them to the public (or publishing).

Several other public key cryptosystems are developed in Chapter 9. In addi-
tion to the confidentiality that is provided by symmetric key cryptosystems,
public key cryptosystems all provide the following additional features:

* There are a very large number of computational problems where there is an “efficient” way
to check whether a proposed answer is correct, in that it can be done in an amount of time
that is bounded by a power of the input size (this is called “in polynomial time”) but where
no known algorithm has been designed to find the solution that will also work in polynomial
time. A prototypical example is the prime factorization problem. It has been established
that there is a plethora of such problems that are seemingly unrelated but if a polynomial
time algorithm is discovered for one of them, then polynomial time algorithms can be pro-
duced for all of them! This latter class of problems is known as the NP complete problems,
whereas problems that can be solved in polynomial time are called P problems. Most sci-
entists believe that NP P≠ , but the conjecture remains one of the most famous unsolved
problems in mathematics and computer science. For more details on the P = NP problem, the
interested reader is referred to the classic but authoritative reference by Garey and Johnson
[GaJo-79]. Resolving this problem is one of the seven millennium problems for which the
Clay Foundation (http://www.claymath.org/millennium/) is offering $1 million prizes.

An Overview of the Subject 25

• Authentication: The intended recipient of a message will be able
to verify that it came from the indicated sender.

• Nonrepudiation: The sender of a message will not be able to
deny that he or she was the sender.

These can be achieved by so-called digital signature schemes. Digital
signatures, unlike ordinary signatures, are unique for each sender and
cannot be forged.

With all of the added advantages and high security of public key
cryptosystems, a natural question thus arises: Why even bother anymore
with symmetric key cryptosystems? The answer is that symmetric key
cryptosystems are significantly faster and more efficient than public key
cryptosystems. Thus both types of cryptosystems can continue to live a
productive coexistence: public key cryptosystems can be used to securely
exchange private keys, after which the faster private key cryptosystems
can be used.

In the mid-1980s, a new sort of public key cryptosystem was developed
using a geometrically motivated (but analytically complicated) arithmetic
of points with integer coordinates on certain planar curves known as ellip-
tic curves. In spite of their name, these curves are not ellipses but a more
diverse family of unbounded curves. The key sizes required for a given
elliptic curve cryptosystem are significantly smaller than what would be
required for other typically known public key cryptosystems with the same
degree of security, and this fact has made elliptic curve cryptography one
of the most promising and extensively studied branches of cryptography.
Elliptic curve cryptography will be studied in Chapter 12.

The One-Time Pad, Perfect Secrecy
Circumstances and needs, as well as advances in technology, fuel the
constant efforts to design (and attempts to crack) evermore sophisticated
cryptosystems. The eminent scientist Claude Shannon* (Figure 1.11)
wrote a number of seminal papers on cryptography in which he gave two
important properties that cryptosystems should possess to avoid being
compromised: diffusion and confusion. Diffusion means that changing
just a single character in the plaintext should diffuse (spread out) to affect
changes in several ciphertext letters (the more the better). Confusion means

* Claude Shannon grew up in Michigan. He earned a bachelor’s degree with a double major
in mathematics and electrical engineering from the University of Michigan–Ann Arbor.
His landmark discovery of an effective symbolism for electric circuits actually came from
his master’s thesis at MIT: A Symbolic Analysis of Relay and Switching Circuits. This
thesis has had a tremendous impact on industry by changing circuit design from an art to
a science. Shannon went on to earn a doctorate at MIT and continued to make valuable
contributions to the electronics and communications fields during his career working at
Bell Labs, where his laboratory office ceiling was adorned with a rainbow of gowns from
honorary doctorates that he had received. He developed a secure cryptosystem that was
used by Roosevelt and Churchill for transoceanic communications during World War II.
His work in this area motivated the development of the field of coding theory, for which he
is considered the founder. Coding theory studies what are called error-correcting codes,
which are used in everything from CDs to routine data transmissions. We have Shannon to
thank, for example, when a scratched music CD will still play perfectly well.

26 Introduction to Cryptography

that there should be no simple relationship between a cryptosystem’s key
and instances of its ciphertext. For example, any substitution cipher does
not exhibit diffusion since changes in a single plaintext letter will affect
only the corresponding ciphertext letter. Block ciphers are conceived to
have good diffusion.

Another important contribution of Shannon was the concept of perfect
secrecy that he introduced in 1949. This concept rigorously defines what
it means for a cryptosystem to be “unbreakable,” in the sense that see-
ing the ciphertext of any plaintext message (in a ciphertext-only attack)
gives the hacker absolutely no information about the plaintext. There is
actually a rather simple cryptosystem that exhibits perfect secrecy: the
Vigenère cipher with a randomly generated key that is the same length as
the plaintext; it is called a one-time pad. This cryptosystem is sometimes
also called the Vernam cipher, after its inventor, Gilbert S. Vernam, a
cryptographer with AT&T. It is not very practical to use because of the
large keys, and the fact that once a key is used it must be thrown out.
Although it had been conjectured for several decades that the one-time
pad was perfectly secure, Shannon was the first to provide a rigorous
proof. One-time pads have since been used for some of the most sensitive
communication purposes; for example, Figure 1.12 shows a one-time pad
system at the U.S. end of the Moscow–Washington hotline, in use during
the Cold War era.

The next example shows how the one-time pad works.

Example 1.7: The One-Time Pad

The concept of a one-time pad involves randomness. By its very

nature, any random process is unpredictable and this will be

the key element that results in the system’s being perfectly

secure. There are 26 different shift operators, corresponding to

the keys κ = 0 1 2 3 25, , , , , . The key for a one-time pad needs to

Figure 1.11 Claude E. Shannon (1916–2001), American applied

mathematician.

An Overview of the Subject 27

consist of a sequence of shift keys that are randomly selected

from the list of 26 possible keys. Each key corresponds to how

many letters down the alphabet the plaintext letter a (and hence

all plaintext letters) gets shifted, see Table 1.3.

Suppose that we need to send a message that contains N

characters. The one-time pad would require a key of length at

least N. To produce the key, imagine that we label 26 identical

balls with the possible key numbers 0–25 and place them in an

urn; see Figure 1.13.

We shuffle the balls, randomly draw one ball, record its num-

ber, then replace it in the urn and reshuffle. We repeat this pro-

cess N times to produce the one-time pad key. Although it seems

contradictory, computer algorithms (which are programmed to

follow a fixed set of instructions) have been designed to pro-

duce so-called pseudorandom numbers, which, for all practical

purposes, can be assumed random.* The computer implemen-

tations given at the end of this chapter provide some schemes

for producing such random numbers. For example, suppose

that we needed to create a one-time pad cipher with keylength

* Of course, any computer algorithm runs on a specified set of instructions, so technically
such a program cannot produce truly random numbers. Nonetheless, effective algorithms
can be created that produce streams of numbers that satisfy all of the important statistical
tests for randomness. Moreover, the programs can call on the computer clock to produce
the “seed” of the generator so the algorithm will produce different streams at each call.
For more details on such pseudorandom number generator algorithms, we refer the reader
to Chapter 2 of [LePa-06] or Chapter 3 of [Knu-98].

Figure 1.12 Photograph of the one-time pad machines (black) in use by the

U.S. Signal Corps to support the Washington–Moscow hotline. The white

machines were used to print and read plaintext messages. Photograph

courtesy of the United States National Archives.

28 Introduction to Cryptography

N = 15. Resorting to a random number generator, we obtained

the following sequence that we will use as the key for the one-

time pad:

κ = [21 23 4 23 16 3 7 14 24 25 4 25 9 13 21]

By consulting Table 1.3, we see that the resulting one-

time pad will simply be the Vigenère cipher with keyword:

vxexqdhoyzezjnv. Notice that we used lowercase letters although

Table 1.3 had uppercase letters (Why?).

Chapter 1 Exercises

 1. For the three diagrams shown below, indicate which specify
functions. For each function, identify its domain, codomain,
and range, and determine whether it is (a) one-to-one, (b)
onto, or (c) bijective.

1

2

3

1

2

3

a
b
c

a
b
c

a
b
c

1

2

3

F G H
d 4 d 4

 2. For these three diagrams, indicate which specify func-
tions. For each function, identify its domain, codomain, and
range, and determine whether it is (a) one-to-one, (b) onto, or
(c) bijective.

Figure 1.13 An urn containing 25 balls of identical size, weight, and texture

can be used for the purpose of random number generation.

TA
BL

E
1.

3
K

ey
 V

al
ue

s
an

d
Le

tt
er

s

A
B

C
D

E
F

G
H

I
J

K
L

M
N

O
P

Q
R

S
T

U
V

W
X

Y
Z

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

No
te
:

Th
e

co
rr

es
po

nd
en

ce
 o

f
ke

y
va

lu
es

 κ
 (

bo
tt

om
 r

ow
)

an
d

th
e

ci
ph

te
rt

ex
t

le
tt

er
 (

to
p

ro
w

)
to

 w
hi

ch
 t

he
 p

la
in

te
xt

 le
tt

er
 “

a”
 g

et
s

sh
if

te
d

to
 w

it
h

a
sh

if
t

ci
ph

er
. T

he
 v

al
ue

 κ
=

0
 is

 n
ot

 a
llo

w
ed

as
 a

 k
ey

 s
in

ce
 it

 c
or

re
sp

on
ds

 t
o

th
e

id
en

ti
ty

 s
hi

ft
 (

th
at

 is
, c

ip
he

rt
ex

t
le

tt
er

s
w

ou
ld

 b
e

id
en

ti
ca

l t
o

pl
ai

nt
ex

t
le

tt
er

s)
.

An Overview of the Subject 29

1

2

3

1

2

3

a
b
c

b
c

a
b
c

1

2

3

F G H
d 4 d 44

 3. Consider the function f : {a, b, c, y} → {length 2 binary strings}
defined by f(a) = 00, f(b) = 01, f(c) = 10, f(y) = 11.

 (a) Is f one-to-one?
 (b) Is f onto?
 (c) Determine the binary string f(a) f(b) f(b) f(y).
 (d) Suppose that the binary string 1000010111 was produced

by concatenating the outputs of f under a corresponding
string of input values. Determine the input string.

 4. Consider the function G : {a, b, e, f, l, t, y} → {length 3 binary
strings} defined by G(a) = 000, G(b) = 001, G(e) = 010, G(f) =
011, G(l) = 100, G(t) = 101, G(y) = 110.

 (a) Is G one-to-one?
 (b) Is G onto?
 (c) Determine the binary string G(b) G(e) G(l) G(t).
 (d) Suppose that the binary string 100000101010 was produced

by concatenating the outputs of G under a corresponding
string of input values. Determine the input string.

 5. (a) Suppose that f A B: → is a function, where A and B are
finite sets, and that A has more elements than B. Does f
necessarily have to be onto? Can f ever be one-to-one?
Explain.

 (b) Suppose that f A B: → is a function, where A and B are
finite sets, and that B has more elements than A. Does f
necessarily have to be one-to-one? Can f ever be onto?
Explain.

 6. (a) Suppose that f A B: → is a one-to-one function, where A
and B are finite sets, each containing the same number of
elements. Explain why f is necessarily bijection.

 (b) Suppose that f A B: → is an onto function, where A and
B are finite sets, each containing the same number of ele-
ments. Explain why f is necessarily bijection.

 7. Provide an example of a function from the positive integers

{1, 2, 3, } to {1, 2, 3, } that is:
 (a) Neither one-to-one nor onto.
 (b) One-to-one, but not onto.
 (c) Onto, but not one-to-one.
 (d) A bijection f such that f a a() ,≠ for each positive integer a.

 8. Provide an example of a function from the set {finite length
binary strings} to the set {finite length binary strings} that is:

 (a) Neither one-to-one nor onto.
 (b) One-to-one, but not onto.
 (c) Onto, but not one-to-one.
 (d) A bijection f such that f () ,σ σ≠ for finite length binary

string σ .

30 Introduction to Cryptography

 9. Consider the suffix function G: {finite length binary strings}

→ {finite length binary strings} defined by G()σ σ= ⋅1; i.e.,

G()σ is the concatenation of σ with the length 1 string “1.” For
example, G(1010) = 10101. (In other words, G tacks a suffix “1”
onto every string.)

 (a) Is G one-to-one?
 (b) Is G onto?
 (c) In case G is a bijection, determine the inverse function.

 10. Consider the reversal function H: {finite length binary strings}
→ {finite length binary strings} defined by =−H b b b b()n n1 2 1
b b b bn n 1 2 1− ; i.e., the output of any binary string (under H) is
the string of the same length, but with the bits given in the
opposite order. For example, H(1010) = 0101.

 (a) Is H one-to-one?
 (b) Is H onto?
 (c) In case H is a bijection, determine the inverse function.

 11. Consider the function f : {length 8 binary strings} → {length 8
binary strings} defined by f(b1b2b3b4b5b6b7b8) = b2b4b6b8b1 b3b5b*,
where b* = 1 if b b b6 7 8+ + is an even number; otherwise, b* = 0.
For example, f(11110000) = 11001101.

 (a) Is f one-to-one?
 (b) Is f onto?
 (c) In case f is a bijection, determine the inverse function.

 12. Consider the function g: {length 4 binary strings} → {length 4
binary strings} defined by g(b1b2b3b4) = c1c2b1b4, where c1 1=
if b b1 2+ is an even number; otherwise, c1 0= , and while c2 1=
if b b2 4+ is an even number; otherwise, c2 0= . For example,
g(1111) = 0011.

 (a) Is g one-to-one?
 (b) Is g onto?
 (c) In case g is a bijection, determine the inverse function.

 13. (a) Use the Caesar cipher to encrypt the following strings of
plaintext:

 (i) the shipment will arrive at noon
 (ii) lay low until friday
 (iii) always use the back door
 (iv) the phone is bugged
 (b) Decrypt each of the following ciphertexts that came from

the Caesar cipher:
 (i) EULQJWKHLWHPWRMHQNLQV
 (ii) VHQGDJHQWSRONDVLJQDO
 (iii) LQWHUFHSWWKHLUFDVHZRUNHU
 (iv) FKHFNLQWRWKHKRWHO

 14. (a) Use the Caesar cipher to encrypt the following strings of
plaintext:

 (i) two minutes until alarm sounds
 (ii) spread out your team
 (iii) reconnaissance is on schedule
 (iv) this hotel is safe
 (b) Decrypt each of the following ciphertexts that came from

the Caesar cipher:

An Overview of the Subject 31

 (i) OHDYHPRQHBLQVZLVVDFFRXQW
 (ii) VWDOOWKHPIRUWKUHHKRXUV
 (iii) GRQWOHDYHZLWKRXWDJHQWGXFKRYVNL
 (iv) ERRNDIOLJKWWRSUDJXHXQGHUDOLDV

 15. (a) Use the shift cipher with key κ = 22 (i.e., encryption is
accomplished by shifting 22 letters down the alphabet)
to encrypt each of the strings of plaintext of Exercise 13,
part (a).

 (b) Decrypt each of the following ciphertexts that came from
the shift cipher with key κ = 18:

 (i) OSALAFYXGJAFKLJMULAGFK
 (ii) KMTBWULZSKTGSJVWVHDSFW
 (iii) ESCWAFALASDUGFLSULSKSTMKAFWKKESF
 (iv) GHWJSLAGFZSKTWWFUGEHJGEARWV

 16. (a) Use the shift cipher with key κ = 6 (i.e., encryption is
accomplished by shifting six letters down the alphabet)
to encrypt each of the strings of plaintext of Exercise 14,
part (a).

 (b) Decrypt each of the following ciphertexts that came from
the shift cipher with key κ = 1.

 (i) SFUVSOUPGJFMEPGGJDFOPX
 (ii) BTTFNCMFZPVSTUSJLFUJNFCZNJEOJHIU
 (iii) TFOEGPSBEEJUJPOBMBHFOUT
 (iv) JOGPSNBMMMPDBMDBTFXPSLFSTPGUIFQMBO

 17. (a) Use the Vigenère cipher with key rocket to encrypt each
of the strings of plaintext of Exercise 13, part (a).

 (b) Decrypt each of the following ciphertexts that came from
the Vigenère cipher with key bluefog:

 (i) ILLVJZRXTFPGSCBTNMSULPCSSZ
 (ii) USYQJHZJYAANHNXLNWTBOTLMIYIV
 (iii) DZGIFZUOPVYYPXJYACTIXQTYGJ
 (iv) SPHXFFUPXCRYVKIZNIQAGSTARTBOOEBIK
 WLUSUVWCTETMIRSTU

 18. (a) Use the Vigenère cipher with key mole to encrypt each of
the strings of plaintext of Exercise 14, part (a).

 (b) Decrypt each of the following ciphertexts that came from
the Vigenère cipher with key timbucktu:

 (i) VWPFABXYG
 (ii) TTXTSCMYFAMSYEIUGLDFUNRNHZGO
 (iii) UZUOAIHOKVUHBDOCLQAOAYZAEME
 (iv) RWGSUVBULXMTMZHLMQEXUSMCGORPLIHO

 19. (a) Use the Playfair cipher with key diskjockey to encrypt
each of the strings of plaintext of Exercise 13, part (a).

 (b) Decrypt each of the following ciphertexts that came from
the Playfair cipher of part (a):

 (i) RBIABDIGTPSZ
 (ii) QMBGDTYASKCZXKPKCIDUICTPYBQM
 (iii) REBSLUMNGYXYNBLFCR
 (iv) QTBPCPSCDZLXYBQTDMYIKDTKUFGEQD
 SIYEITBQGYGDGAKW

32 Introduction to Cryptography

 20. (a) Use the Playfair cipher with key crimson to encrypt
each of the strings of plaintext of Exercise 14, part (a).

 (b) Decrypt each of the following ciphertexts that came from
the Playfair cipher of part (a):

 (i) KFMCVFNIRAQGCFASOIEFQY
 (ii) EFFLDINGKOMCQBORGV
 (iii) YTFCGCIDIOCHINRAYTFCKCPMAVBC
 (iv) OHXNCFNERDRQFCCDBPKFIOYTKOIN
 PCAVNELBQW

 21. Explain how a known plaintext attack on the Vigenère cipher
would work. How much plaintext would be required for the
attack to work?

 22. (a) Explain how a chosen plaintext attack on the Vigenère
cipher would work. How much plaintext would be required
for the attack to work?

 (b) Explain how a chosen ciphertext attack on the Vigenère
cipher would work. How much ciphertext would be
required for the attack to work?

ADFGVX Cipher

A cipher that is similar to the Playfair cipher, known as the ADFGVX cipher,
was used by the Germans during the First World War. The ciphertexts involve
only these six letters, which were chosen because of their easy distinctions in
Morse code (which through telegraphs and radio was the primary means of
military communications). We explain how this cipher works through a spe-
cific example. First, the method begins by randomly arranging the 26 letters
of the alphabet along with the 10 digits into a 6 6× array with the rows and
columns labeled with the letters ADFGVX. Table 1.4 shows such a table.

Encryption: Suppose that we are given a plaintext, such as “Ambush
at the Rhein.”

Step 1. Replace each plaintext letter with the pair of letters in the
ADFGVX table (Table 1.4) that label the plaintext letter’s row and col-
umn. So a is replaced by DV, t by DD, and so on.

plaintext: a m b u s h a t t h e r h e i n

Step 1: DV GX FF GD VD DX DV DD DD DX XD VV DX XD VG AX

At this point, we have a substitution cipher, which at the time of the
First World War would have certainly been long-outdated technology and

TABLE 1.4 ADFGVX Table

A D F G V X

A 8 p 3 d 1 n

D 1 t 4 o a h

F 7 k b c 5 z

G j u 6 w g m

V x s v i r 2

X 9 e y 0 f q

An Overview of the Subject 33

easily hacked. The second and final step makes the plaintext much more
difficult to hack.

Step 2. This part, which depends on a keyword, will permute the output
string of Step 1. In this example, we use the keyword MAGIC. We cre-
ate a new table with columns labeled by the keyword, and fill in the cells
below it in reading order, row, by row. After this is done, we rearrange the
columns of this table, so the keyword letters are in alphabetical order. The
ciphertext is obtained by taking the letters of each column, from top to
bottom, and taking the alphabetized columns in order.

`

M A G I C

D V G X F

F G D V D

D X D V D

D D D D X

X D V V D

X X D V G

A X

A C G I M

V F G X D

G D D V F

X D D V D

D X D D D

D D V V X

X G D V X

X A

Reading down the columns of the second (column permuted table)
gives us the ciphertext:

Ciphertext: VGXDDXXFDDXDGGDDDVDXVVDVVDFDDXXA

Decryption is performed by reversing the encryption process. Note that
in addition to the keyword, the ADFGVX table (Table 1.4) is also part
of the key, since it depends on how the letters and digits were randomly
deployed in the 36 cells.

Historical Aside: By the time of the First World War, the French had
assembled a very strong cryptography team, after having suffered an embar-
rassing defeat where they had lost the provinces of Alsace and Lorraine in the
Franco-Prussian War of 1870. This defeat would most probably have been
avoided if the French had better intelligence. Soon after the Germans began
confidently using the ADFGVX cipher in 1918, as they were making plans to
take over Paris, the French put their most prized cryptographer, Lieutenant
Georges Painvin (Figure 1.14), to work on decrypting this new cipher. Painvin

Figure 1.14 Georges Painvin (1886–1980), French cryptographer.

34 Introduction to Cryptography

worked day and night to crack it and was able to succeed with three months
of hard work. His efforts were so consuming, though, that they affected his
health; he lost 30 pounds in the process. Readers interested in learning more
details about Painvin’s ingenious attack may refer to [Kah-96].

 23. (a) Use the ADFGVX cipher with key PARIS to encrypt each
of the strings of plaintext of Exercise 13, part (a).

 (b) Decrypt each of the following ciphertexts that came from
the ADFGVX cipher of part (a):

 (i) VVVDXDVDDXVDDD
 (ii) XXDDGADAXVVXGGXVXXGVXGXGVGGD
 DXDAGDGDDADAXAGAVAFVXVGVDXGDXA
 (iii) DVDGVGDGDFDDVDFVVXGVGDVDGDX
 VGDXVDDGDVD
 (iv) XFDDDDAXDDGXXDVVVFDDADXXDGD
 VADVDVXAVAAXXDGFDXDAGAFDGD
 DDDVGDFDG

 24. (a) Use the ADFGVX cipher with key CRIMSON to encrypt
each of the strings of plaintext of Exercise 14, part (a).

 (b) Decrypt each of the following ciphertexts that came from
the ADFGVX cipher of part (a):

 (i) DVDDAAXDVGFGDDDXGFXFVVADVXVGFA
 (ii) VVADXDDGXGDDDDVGDADDXXVDGX
 VGVDXVXXGXXVVXVDVGGGXDVDDA
 (iii) DXGDXVDDVVXVGXXGVVGXFDFXGDGD
 FVDDFDDDAFAGXXGFVD
 (iv) DFAVVXDADVDDDDVVDGXXXDDVD
 DXXDDXVDVADDDDDDGDGXDGXDAXVD
 DDVDAXADDVDXDAD

 25. Do identical adjacent pairs of plaintext typically encode to the
same four-letter ciphertext strings under the ADFGVX cipher?
Explain your answer.

 26. Are there any problems with procedure and/or loss of security
with the ADFGVX cipher if one were to use a keyword with
duplicated letters (such as LONDON)? Explain your answer.

 27. (a) Do we gain any new ciphers by allowing the shift ciphers to
shift to the left (rather than just to the right)? Explain your
answer.

 (b) Do we gain any new ciphers by allowing the shift ciphers
to shift more than 25 letters to the right? Explain.

 28. Suppose that we construct a cryptosystem consisting of a
Vigenère cipher, followed by another Vigenère cipher, where
the keywords of each have the same length. Explain how much
additional security, if any, such a system would provide over a
single Vigenère cipher.

 29. Suppose that n > m are positive integers. Discuss the differ-
ences in security of the following two cryptosystems:

 (i) Use a Vigenère cipher with a keyword of length nm.
 (ii) Use a Vigenère cipher with a keyword of length n followed

by another Vigenère cipher of keyword length m.

An Overview of the Subject 35

 30. (a) List all binary strings of length 0, 1, 2, and 3.
 (b) Use the multiplication principle to compute the number of

binary strings of length n, where n is any positive integer.
 (c) Letting Bn denote the binary strings of length n, explain

why every string in Bn+1 can be uniquely expressed as
either 0 ⋅σ or 1⋅σ for some length-n binary string σ.

 (d) Use the result of part (c) to give another proof of the result
of part (b) using mathematical induction.

 31. Discuss the secrecy of a substitution cipher that is used to send
a plaintext message that consists of just a single letter.

Chapter 1 Computer Implementations
and Exercises
Note: Some of the exercises below ask the reader to write programs that
may not be feasible on some computing platforms or that require knowl-
edge of certain sorts of data structures that will not be essential in later
developments in this book. For example, most of the cryptosystems that
we will develop after this chapter are designed to work directly on either
strings or ordered lists (vectors) of numbers. The numbers will most often
be integers or binary numbers (zeros and ones). Later, we will essentially
assume that plaintexts will be presented in this form. In cases where the
programming for particular exercises is not feasible or not important for a
particular platform or use, such an exercise may be suitably improvised or
even skipped without any loss of continuity.

Vector/String Conversions

Oftentimes in computer implementations of cryptosystems, it is more con-
venient to work with vectors rather than strings. A vector is simply an
ordered list. This will be the case, for example, in our development of DES
in Chapter 8. On the other hand, it is often more aesthetic to display binary
strings rather than binary vectors. For example, the binary vector corre-
sponding to the binary string 101100011101 might display (depending
on your particular computing platform) as

 [1 0 1 1 0 0 0 1 1 1 0 1]

or as

 [1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1]

Vectors are more versatile data structures than strings, since elements
could be digits or any numbers. For example, the vector [32, 5] could
not be so unambiguously represented as a string (325 would not do). The
first two exercises below ask you to create conversion programs to pass
between strings and vectors. If you need to work with strings of digits
(such as binary strings), you need to know the syntax by which to enter

36 Introduction to Cryptography

them into your computing platform. For example, the number 101 is a dif-
ferent data structure than the binary string 101.

 1. Program for Converting Strings of Digits to Vectors of Digits.
Write a program Vec = String2Vec(Str) that inputs a
string Str of digits (binary or decimal) and outputs the correspond-
ing vector Vec. Thus, for example, the command String2Vec
(24821) should produce the output [2 4 8 2 1]. Run your
program with the following inputs, and record the outputs:

 (a) 110101111
 (b) 22953688
 (c) 9876543210

 2. Program for Converting Vectors of Digits to Strings of Digits.
Write a program Str = Vec2String(Vec) that inputs a vector
Vec of digits (binary or decimal) and outputs the corresponding
string Str. Thus, for example, the command Vec2String([2 4
8 2 1]) should produce the output 24821. Run your program
with the following inputs, and record the outputs:

 (a) [1 0 1]
 (b) [1 0 1 1 0 0 0 1 1 1 0 1]
 (c) [9 8 7 6 5 4 3 2 1 0]

Integer/Text Conversions

The next four exercises ask you to develop programs that will make con-
versions between the integer/text correspondence of Table 1.3.

Since vectors tend to be easier to work with than strings, it is probably
best (depending on your particular platform) to have programs work inter-
nally with vectors but accept inputs and/or display outputs as strings. In
order to achieve conversions relating to Table 1.3, it is most obvious to first
think of employing a simple lookup type code:

(using a FOR loop to go through each inputted symbol Let, and then)

IF Let = = A
 SET Code = 0
ELSE IF Let = =B
 SET Code = 1
ELSE IF Let = = C
 SET Code = 2
(…etc…)

Although this would certainly work, it would be more efficient to
make use of any built-in text conversion programs that your platform may
have available. Most platforms have a conversion program that converts
any of the 256 standard ASCII symbols (including upper- and lowercase
letters, punctuation marks, and so forth) into its unique representative
as an integer from 0 to 255. The 26 uppercase/lowercase letters should
be mapped to contiguous blocks of integers, so you would simply need
to find out where A (or a) gets mapped in order to create a very simple
program. For example, if A gets mapped to 65 (so Z would get mapped
to 90), you could simply take the output of this built-in mapping function
and subtract 65 to arrive at the letter-to-integer conversion of Table 1.3. TA

BL
E

1.
3

K
ey

 V
al

ue
s

an
d

Le
tt

er
s

A
B

C
D

E
F

G
H

I
J

K
L

M
N

O
P

Q
R

S
T

U
V

W
X

Y
Z

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

No
te
:

Th
e

co
rr

es
po

nd
en

ce
 o

f
ke

y
va

lu
es

 κ
 (

bo
tt

om
 r

ow
)

an
d

th
e

ci
ph

te
rt

ex
t

le
tt

er
 (

to
p

ro
w

)
to

 w
hi

ch
 t

he
 p

la
in

te
xt

 le
tt

er
 a

 g
et

s
sh

if
te

d
to

 w
it

h
a

sh
if

t
ci

ph
er

. T
he

 v
al

ue
 κ
=

0
is

 n
ot

 a
llo

w
ed

 a
s

a
ke

y
si

nc
e

it
 c

or
re

sp
on

ds
 t

o
th

e
id

en
ti

ty
 s

hi
ft

 (
th

at
 is

, c
ip

he
rt

ex
t

le
tt

er
s

w
ou

ld
 b

e
id

en
ti

ca
l t

o
pl

ai
nt

ex
t

le
tt

er
s)

.

An Overview of the Subject 37

In case your platform’s program can convert a whole string at once (into
a vector of integers), your program could be accomplished in a single line
of code.

 3. Program for Converting Uppercase Text to Integers. Write a
program Vec = UCText2Int(STR) that inputs a string STR
of uppercase English letters, and outputs the corresponding vector
Vec of integers as per Table 1.3. Thus, for example, the command
UCText2Int(CATBIRD) should produce the output [2 0 19 1 8
17 3]. Run your program with the following inputs, and record the
outputs:

 (a) JUSTDOIT
 (b) ROADTRIPTHISWEEKEND
 (c) HIGHSTAKESGAME

 4. Program for Converting Lowercase Text to Integers. Write a
program Vec = LCText2Int(str) that inputs a string str
of lowercase English letters, and outputs the corresponding
vector Vec of integers as per Table 1.3. Thus, for example, the
command Text2Int(catbird) should produce the output
[2 0 19 1 8 17 3]. Run your program with the following inputs,
and record the outputs:

 (a) longlivetheking
 (b) letsgotoamovie
 (c) dinnerpartytonite

 5. Program for Converting Integers to Uppercase Text. Write a
program STR = Int2UCText(Vec) that inputs a vector
Vec of integers in the range 0 to 26, and outputs the corre-
sponding string STR of uppercase English letters, as per
Table 1.3. This is simply the inverse function of the function of
Computer Exercise 3. First run this program on the outputs for
UCText2Int when applied to the inputs of parts (a), (b), and
(c) of Computer Exercise 3 to check that your new function is
really the inverse of UCText2Int. Next, run your program
with the following inputs, and record the outputs:

 (a) [2 7 0 12 15 0 6 13 4]
 (b) [5 8 11 4 19 12 8 6 13 14 13]
 (c) [2 7 14 2 14 11 0 19 4 12 14 20 18 18 4]

 6. Program for Converting Integers to Lowercase Text. Write a
program str = Int2LCText(Vec) that inputs a vector Vec
of integers in the range 0 to 26, and outputs the correspond-
ing string str of lowercase English letters, as per Table 1.3
(but with lowercase letters). This is simply the inverse function
of the program LCText2Int of Computer Exercise 4. What
happens if you apply this program to the output of the program
UCText2Int of Computer Exercise 5 to a string of uppercase
letters? Check your conclusion by the evaluation of Int2LC
Text(UCText2Int(CATBIRD)). Run your program with
the following inputs, and record the outputs:

 (a) [15 8 2 10 20 15 19 7 4 15 8 4 2 4 18]
 (b) [0 1 14 17 19 19 7 4 12 8 18 18 8 14 13 13 14 22]
 (c) [15 17 14 2 4 4 3 22 8 19 7 2 14 13 19 8 13 6 4 13 2 24 15

11 0 13 19 22 14]

38 Introduction to Cryptography

Programming Basic Ciphers with Integer Arithmetic

The programs of the preceding computer exercises should facilitate writ-
ing encryption/decryption programs for most of the basic ciphers that
were introduced in this section. The basic idea to consider is that it is
much simpler to work with integers rather than the letters they correspond
to in Table 1.3. This simplicity will be further enhanced as we introduce
new forms of arithmetic. For example, modular arithmetic of the next
chapter is particularly suitable for implementing shift and related ciphers.
For now, if we wanted to implement a shift cipher, say the Caesar cipher,
using the integer representation of Table 1.3, we would simply add 3 (the
key) to a given plaintext representative, as long as the result is less than 26.
For example, the plaintext letter f is represented by 5 (in Table 1.3), add-
ing 3 gives 8, the corresponding representative for the ciphertext letter I
(in Table 1.3). In case adding 3 gives an integer greater than 25, we would
subtract 26 from the result, as this would have the same effect as cycling
back to the beginning of the alphabet. For example, the plaintext letter y
corresponds to 24, adding 3 gives 27, and since this is greater than 25,
we subtract 26 to get 1, which is the representative of the corresponding
ciphertext letter B.

 7. Program for Shift Cipher. Write a program StrOut = Shift
Crypt(str,kappa) that inputs a string str of plaintext
in lowercase English letters, and an integer kappa mod 26.
The output StrOut should be the corresponding ciphertext
(in uppercase letters) after the shift operator with key kappa
is applied to the plaintext. Then use your program to redo the
computations of Chapter Exercises 13 and 15.

 Note: In the decrypting parts, you will need to change
your ciphertexts to lowercase (and choose the correct shift
parameter).

 Suggestion: The programs of some of the preceding computer
exercises should be useful here.

 8. Ciphertext-Only Attack on the Shift Cipher. It is known that
the following ciphertexts were encrypted using (perhaps dif-
ferent) shift ciphers. Decrypt these messages and determine
the corresponding keys that were used.

 (a) HXDALJAANBNAEJCRXWRBDWMNACQNWJVN
 SXWNB
 (b) BCJHJCCQNARCIKDCYJATHXDALJAJCCQN
 FJUMXAO
 (c) DWQYIDMCIFBSKGDODSFOHHVSTFCBHRSGYI
 BRSFHVSBOASXCBSG
 (d) XLIHIXEMPWSJCSYVQIXXMRKAMPPFISRXLI
 WXSGOTEKIAVMXXIRMRGSHI

 9. Program for Vigenère Cipher. Write a program StrOut =
VigenereCrypt(str,keystr) that inputs a string str
of plaintext in lowercase English letters and another such string
keystr representing a key. The output StrOut should be the
corresponding ciphertext (in uppercase letters) after the Vigenère

An Overview of the Subject 39

cipher with key keystr is applied to the plaintext. Then use your
program to redo the computations of Chapter Exercise 17, part (a).

 Note: In the decrypting parts, you will need to change your
ciphertexts to lowercase (and choose the correct key).

 Suggestion: The programs of some of the preceding computer
exercises should be useful here. Your program should proceed
character by character, using a FOR loop.

 10. Program for Decryption of Vigenère Cipher. Write a program
strOut = VigenereDeCrypt(STR,keystr) that inputs
a string STR of ciphertext in uppercase English letters and
another such string keystr representing a key. The output
strOut should be the corresponding plaintext (in lowercase
letters) before the Vigenère cipher with key keystr is applied
to produce the ciphertext. Then use your program to redo the
computations of Chapter Exercise 17, part (b).

 Suggestion: Modify your program VigenereCrypt by
changing each individual shift to its inverse shift.

 11. Program for Playfair Cipher. Write a program StrOut =
PlayfairCrypt(str,keystr) that inputs a string str
of plaintext in lowercase English letters and another such string
keystr representing a key. The output StrOut should be the
corresponding ciphertext (in uppercase letters) after the Playfair
cipher when key keystr is applied to the plaintext. Then use your
program to redo the computations of Chapter Exercise 19, part (a).

 12. Program for Decryption of the Playfair Cipher. Write a pro-
gram strOut = PlayfairDeCrypt(STR,keystr) that
inputs a string STR of ciphertext in uppercase English letters
and another lowercase string keystr representing a key. The
output strOut should be the corresponding plaintext (in low-
ercase letters) before the Playfair cipher with key keystr is
applied to it. Then use your program to redo the computations
of Chapter Exercise 19, part (b).

Computer-Generated Random Numbers

Most computing platforms feature built-in “random number generators” that
are of production quality. Recall that the text cites references that provide
detailed developments of such programs, and the interested reader may wish
to pursue these, but our approach will be to make the following convention.

Convention: We assume that a random number generator is available on
our computing platform. We denote it by rand, and assume that it functions
as follows: Each time rand is called, the output will be a pseudorandom
real number (with decimals) from the interval (0,1); that is, 0 < rand < 1.

In the language of statistics, we say that rand is uniformly distributed in the
interval (0,1). This means that each time rand is called to generate a random
number, the probability that rand will lie in any subinterval of (0,1) will
equal the length of that subinterval. For example, the probability that rand
(on any given call) be less than 1/2—that is, 0 < rand < 1/2—is 1/2, and the

40 Introduction to Cryptography

probability that rand will be greater than 7/8—that is, 7/8 < rand < 1—is
1/8 [the length of the interval (7/8,1)]. This rand function may also have
ways to reset its “seed” from its default value so that it will start off differently
whenever the program is restarted; linking the seed to the computer’s clock
is usually a good way to accomplish this. Additional features of the rand
function may include options that will allow it to produce ordered lists (vec-
tors) of such random numbers,* and such a feature is particularly convenient
for generating one-time pads. Although rand produces real numbers (with
decimals) in the special range (0,1), we often need to generate random integers
in a specified range. This can be done using the Algorithm 1.1, which is based
on the following simple fact.

Fact: Since rand is uniformly distributed in (0,1), if N is any positive
integer, then N rand will be uniformly distributed in the interval (0,N).

In order to convert real numbers to integers, we use the floor func-
tion (built in to most computer platforms). This is a function mapping
the real numbers to the integers, which operates as follows: For any real
number x, floor(x) will be the greatest integer that is less than or equal to
x. For example, floor(2.1) = 2 = floor(2) = floor(2.999), floor() ,π = 3 and
floor(–2.6) = –3.

Algorithm 1.1: Generating Random Integers Using rand

Given two integers < k , the number J k= + − + ×floor([])1 rand
will be a random integer in the range ≤ ≤J k.

To help better understand this algorithm (in a very relevant situa-
tion), suppose we take = =0 25, .k Then since k − + =1 26, the fact
mentioned above tells us that []k − + × ×1 26rand = rand is a real
number that is uniformly distributed in the interval (0, 26). When we
take the floor: floor([])k − + ×1 rand , the possible integers that can
arise are the integers from 0 to 25 (inclusive) and since each of these
integers will occur if the previous number lies in an interval of length
1 (in the total interval of length 26), it follows that each of these 26
integers has a 1/26 chance of occurring.

 13. Program for Creation of Keys for One-Time Pads.
 (a) Write a program key = OneTimePadKeyMaker

(keylength) that inputs a positive integer keylength,
and outputs a vector having keylength randomly chosen
integers from the range {0, 1, …, 25}. strOut should be
the corresponding plaintext (in lowercase letters) before
the Vigenère cipher with key keystr is applied to it. Use
your program to produce a length-12 key.

 (b) Write a program having syntax LetterStr = OneTime
PadKeyMaker(keylength) that functions like the one
in part (a) except that the output will be a string (rather than
a vector) of lowercase English letters that are determined by
Table 1.3 (from the random integers that are generated). Use
your program to produce a random key of length 12.

* If this feature is not available, ordered lists can easily be produced by using a FOR loop.

An Overview of the Subject 41

 14. Program for Random Integer Generator.
 (a) Write a program Vec = RandIntGen(ell, k, length)

that inputs three integers, the first two need only satisfy ell <
k, and the third, length, is any positive integer. The output,
Vec, is a vector with length elements consisting of randomly
generated integers from the range ell k≤ ≤J . The program
should be based on Algorithm 1.1.

 (b) Use your program to produce a length-20 vector of ran-
dom integers from the range 26 30≤ ≤J . Print out this
vector.

 (c) Use your program to produce a length-1000 vector of
binary digits (0s and 1s). Do not print this vector, but (get
your computer to) count how many of the entries are 0s
and write this down. Repeat this and record the new count
of the zeros.

515

Appendix C: Solutions to All
Exercises for the Reader

Chapter 1: An Overview of the Subject
EFR 1.1
 (a) The function C is not onto since any string whose first two bits

are different from 10 will not be in the range. The function C
is one-to-one, since C C() ()σ σ= ′ implies 1010 1010⋅ = ⋅ ′σ σ
and by ignoring the first four bits, we get that σ σ= ′.

 (b) Suppose that D b b b D b b b() ().1 2 3 1 2 3= ′ ′ ′ Let d1d2d3 =
D b b b d d d D b b b1 2 3 1 2 3 1 2 3

′ ′ ′ = ′ ′ ′(), (). Equating first bits:
d d1 1= ′ , the definition of D tells us that b b1 1= ′ . Next, since
d d2 2= ′ , the definition of D tells us that b b b b1 2 1 2+ ′ + ′, are
either both even, or both odd. But since we already know that
b b1 1= ′ , this means that b b2 2, ′ are either both even, or both odd.
Since these bits can only be 0 or 1, this forces them to be equal,
i.e., b b2 2= ′ . Finally, since d d3 3= ′ , a similar argument shows
b b3 3= ′ . We have thus shown that D b b b D b b b() ()1 2 3 1 2 3= ′ ′ ′
implies b b b b b b1 2 3 1 2 3= ′ ′ ′ , i.e., D is one-to-one.

EFR 1.2
 (a) YQQFFTQUOQYMZMFZAAZ
 (b) Jenkins is a turncoat

EFR 1.3
 (a) FWMSOOCNOYHZC
 (b) Break out at midnight

EFR 1.4
 (a) First we state the procedure using the Vigenère tableau

(Table 1.2) and then we explain why it works.
 Procedure: For each keyword letter, look in the correspond-

ing row of the Vigenère tableau for the ciphertext letter A;
the column letter where A is found will be the corresponding
letter for the decryption keyword, if Vigenère encryption is
used. For example, the first letter of the Vigenère keyword
money is m, and we find that in the m-row of the Vigenère
tableau, the letter A appears in the o-column. So the first let-
ter of the Vigenère decryption keyword is o.

 Why This Works: In the Vigenère encryption process, each
letter of the keyword corresponds to a substitution shift
cipher where a gets shifted to the keyword letter. For exam-
ple, if the first keyword letter is m, then the corresponding
shift would shift the plaintext letter a to the ciphertext let-
ter M, and all letters are shifted 12 letters down (looking
at Table 1.3 will be helpful). In order to reverse this shift,

516 Appendix C: Solutions to All Exercises for the Reader

we could either shift the ciphertext letters 12 units up the
alphabet, or shift them the complementary number 26 – 12 =
14 units down, corresponding to the shift where a goes to O.
(Because with the latter option, applying both the original
shift and the latter shift would result in a shift of 12 + (26 –
12) = 26 letters down the alphabet, which simply brings the
plaintext letters back to themselves.) In summary, Vigenère
decryption can be achieved by using the Vigenère encryp-
tion process on the modified keyword by taking each letter
of the original keyword, and using instead the letter that is
obtained by shifting a in the opposite direction by the same
amount, or the complementary number of letters down.
The Vigenère tableau is organized in such a way that these
reverse shifts are readily obtained by the indicated lookup
procedure.

 (b) Using the procedure of part (a), the corresponding Vigenère
decryption keyword would be omnwc.

 Note: Here is an explanation in terms of shift ciphers: The
Vigenère encryption keyword money corresponds to shifts
of 12, 14, 13, 4, 24 down the alphabet (looking at Figure 1.3
of the text might be helpful), the corresponding inverse shifts
would be 26 – 12, 26 – 14, 26 – 13, 26 – 4, 26 – 24 = 14, 12,
13, 22, 2, which correspond to the keyword omnwc.

EFR 1.5
 (a) Removing the duplicated letter a, the modified keyword

barcelon results in the Playfair array:

b a r c e
l o n d f
g h ij k m
p q s t u
v w x y z

 Inserting x’s between double letters of the plaintext, and pairing
off the letters gives us:

 me et ag en ty ul lo va tx th ea ub er ge re st au ra nt

 Encrypting each pair according to the applicable case 1, 2, or
3 produces:

 uf cu bh rf yc pf on wb sy qk br pe bc mb cb tu eq cr ds

 and thus the following ciphertext:
 (b) Breaking off the ciphertext into pairs (and putting it in

lowercase) gives:

 ma xh nv gl be rc cx si hb xs gb bc ac mr de rq rz

 Using the array of part (a), and reversing each of appropriate
cases 1, 2, or 3 of the Playfair encryption cipher produces the

Appendix C: Solutions to All Exercises for the Reader 517

following:

he wi lx lb ec ar ry in ga si lv er br ie fc as ex

Putting the words together and removing redundant x’s gives
the original message: “He will be carrying a silver briefcase.”

569

Appendix D: Answers and
Brief Solutions to Selected
Odd-Numbered Exercises

Chapter 1
1. All three are functions.

(a) Domains of F and G are {a, b, c, d}, domain of H is {a, b, c}.
Codomains of F and H are {1, 2, 3, 4}, codomain of G is {1,
2, 3}. Range of F is {1, 2, 3, 4}, range of G is {1, 2, 3}, range
of H is {1, 2, 4},

(b) F and H are one-to-one, G is not.
(c) F and G are onto, H is not.
(d) Only F is bijective (both one-to-one and onto).

3. (a) Yes
(b) Yes
(c) 00010111
(d) cabby

5. (a) Such a function need not be onto. For example, the set A =
{1, 2} has more elements than the set B = {1}, but the function
f from A to B defined by f(1) = 1 = f(2) is not onto. Such a
function can never be one-to-one. Reason: Since one-to-one
functions can never have duplicated outputs, the range must
be the same size as the domain. But the range is a subset of
the codomain, so for a one-to-one function, the size of the
codomain must be at least as large as the domain.

(b) Such a function need not be one-to-one. For example, the
set A = {1, 2} has fewer elements than the set B = {1, 2, 3},
but the function f from A to B defined by f(1) = 1 = f(2) is not
one-to-one. Such a function can never be onto. Reason: The
range is at most as large as the domain A, which is assumed
to be smaller than the codomain B.

In each of the examples below, we will specify a function
f :{1,2,3, 1,2,3 }.

Any constant function, such as f (i) = 1, for each i ∈{1,2,3,
} is neither one-to-one nor onto.

The right shift function f (i) = i + 1 for each i ∈{1,2,3, } is
one-to-one but not onto since 1 is not in the range.
The function defined by f(1) = 1 and f (i) = i − 1, for each
i ∈{2,3, }, is onto but not one-to-one since f(1) = 1 = f(2).
The function defined by taking each even integer to the odd
integer right before it, and each odd integer to the even integer
right after it, is bijective and satisfies the indicated condition

570 Appendix D: Answers and Brief Solutions to Selected Odd-Numbered Exercises

(an output never equals its input). Here is a formula for this
function: f i i() = −1 if i is even, and f i i() = +1 if i is odd.

9. (a) Yes
(b) No. Reason: No string ending in a zero is in the range.
(c) No

11. (a) Yes. Reason: If = ′ ′ ′ ′ ′ ′f b b b b b b b b f b b b b b b() (1 2 3 4 5 6 7 8 1 2 3 4 5 6

′ ′b b),7 8 this means that = ′ ′ ′ ′ ′ ′∗b b b b b b b b b b b b b b2 4 6 8 1 3 5 2 4 6 8 1 3
′ ′∗b b5 so equating bits gives us that b bi i= ′ for all indices i

except i = 7. But since b b∗ ∗= ′ , we also must have (according
to the definition of f) that b b b6 7 8+ + , b b b6 7 8

′ + ′ + ′ are both
even or both odd, and since we already know that the first
and third of these three terms are the same, it follows that
b b7 7, ′ are both even or both odd. Since they can only be 0 or
1, they must be the same.

(b) Yes. Reason: Given any length-8 string d d d d d d d d1 2 3 4 5 6 7 8 , we
need to find an input string b b b b b b b b1 2 3 4 5 6 7 8 that will give us
this output under f, i.e., satisfying =∗b b b b b b b b d d d2 4 6 8 1 3 5 1 2 3
d d d d d .4 5 6 7 8 From this latter equation, it follows that we must set
b d b d b d b d b d b d b d2 1 4 2 6 3 8 4 1 5 3 6 5 7= = = = = = =, , , , , , , so
the only bit left to specify in the input is b7 . Since b b6 8, are
already specified as d d3 4, , in order to have b d∗ = 8 , we will need
to choose b7 so that if d8 1= , then b d d b b b7 3 4 6 7 8+ + = + +()
is even, whereas if d8 0= , then b d d7 3 4+ + is odd. In either
case, notice that we must have b d d d7 3 4 8+ + + be odd. This
can clearly be done (in only one way) as follows: if d d d3 4 8+ +
is odd, we must have b7 0= , while if d d d3 4 8+ + is even, we
must have b7 1= . Alternatively, the fact that f is onto follows
from the result of Exercise 6(a) and the fact that f is one-to-one
(which was proved in part(a)).

(c) The inverse function’s formula was determined in part (b)
in the process of showing f is onto. Here is the summary
formula of the inverse function: =−f d d d d d d d d()1

1 2 3 4 5 6 7 8

d d d d d d d d b∗∗ =5 1 6 2 7 3 4 1(bb b b b b b b2 3 4 5 6 7 8), where d ∗∗= 0, if
d d d3 4 8+ + is odd, and otherwise d ∗∗= 1.

13. (a) (i) WKHVKLSPHQWZLOODUULYHDWQRRQ
(ii) ODBORZXQWLOIULGDB

(iii) DOZDBVXVHWKHEDFNGRRU
(iv) WKHSKRQHLVEXJJHG

(b) (i) Bring the item to Jenkins
(ii) Send Agent Polk a signal

(iii) Intercept their case worker
(iv) Check in to the hotel

15. (a) (i) PDAODELIAJPSEHHWNNERAWPJKKJ
(ii) HWUHKSQJPEHBNEZWU

(iii) WHSWUOQOAPDAXWYGZKKN
(iv) PDALDKJAEOXQCCAZ

(b) (i) Waiting for instructions
(ii) Subject has boarded plane

Appendix D: Answers and Brief Solutions to Selected Odd-Numbered Exercises 571

(iii) Make initial contact as a businessman
(iv) Operation has been compromised

17. (a) (i) KVGCLBGAGXXPZZNKVKZJGKXGFCP
(ii) COAVSPLBVSPYIWFKC

(iii) RZYKCLLGGDLXSOEUHHFF
(iv) KVGZLHESKCFNXUGN

(b) (i) Harrell will be waiting for you
(ii) The meeting with Watson is as set up

(iii) Come alone but bring your piece
(iv) Rent a room in the Hotel Marignon in the Fifth

Arrondisement

19. (a) (i) QMYIGSTGCPQZKGRLXKPKIGBRTDDT
(ii) RLAHSZDUPOMGPKKCAW

(iii) LRXYHYWDBPGYCBADIDKT
(iv) QMGVMSPCSKCZLVPGKU

(b) (i) Take cover now
(ii) The money is buried underneath

(iii) Pay off the watchman
(iv) Pretend you are a professor; once inside, copy the files

21. If we have any string of plaintext and the corresponding string
of ciphertext, for each matched letters in the strings, the corre-
sponding keyword shift letter is specified by the number of let-
ters that the plaintext letter gets shifted down the alphabet to get
the corresponding ciphertext letter. If we shift 0 letters down, the
keyword letter is a; if we shift 1 letter down, the keyword letter
is b, etc. (see Table 1.3). Thus, for example, if we knew that a
Vigenère cipher was used to convert the plaintext “theyhavegre-
nades“ into the ciphertext POMQRETANZWXEBAZ, since the
first letter t goes to P, which is 26 – (19 – 15) = 22 letters down
the alphabet, we get the first keyword letter must be w. (To see
this, refer to Table 1.3, and use the fact that since P is to the left
of t, the shift must have cycled back after passing z.) Similarly,
since the next plaintext letter h goes to O, which is 14 – 7 = 7
letters down the alphabet, the second keyword letter must be h.
Continuing in this fashion, the given plaintext/ciphertext cor-
respondence produces the following keyword sequence “whis-
keywhiskeywh,” so it appears that the keyword is whiskey. For
such an attack to completely determine the keyword, the known
strings must be at least as long as the (unknown) keyword.

23. (a) (i) DVGXDDVVDAGXDDAGDVVVDXDDVXDGDVX
DDDDADGAVGDXAXXGXVAVFDG

(ii) ADGDAVVVDDVVAFDFGXDVDDAGDXGXXG
AGVG

(iii) VDDXXDDDAXDDDFGVDGVDDFFGDVGDXV
AGGFVDFGDV

(iv) DAGVFGGXDXVDXDDDDFVADDAGGVXXXDGD

572 Appendix D: Answers and Brief Solutions to Selected Odd-Numbered Exercises

(b) (i) retreat
(ii) more munitions needed in Normandy

(iii) strike tomorrow at 4 am
(iv) Metz is a lost battle redeploy in Lyon

25. Each plaintext letter gives rise to two ciphertext letters. In Step 1,
the plaintext letters are assigned to unique pairs of ciphertext,
but into Step 2 these pairs are broken as the letters are put row
by row into an array, and after mixing up the columns, the let-
ters are processed column by column. So it is very unlikely that
identical adjacent pairs of letters will give rise to the same four-
letter ciphertext passages. Here is a specific example. Under the
keyword PARIS, the ADFGVX ciphertexts for “abc” and “cab”
are VFDGFF and GFFVFD, respectively. In the first, “ab” corre-
sponds to VFDG, while in the second it corresponds to FVFD.

27. No. Shifting to the left by k letters is the same as shifting to the
right by 26 – k letters.

29. Generally (i) is more secure. This makes sense since the key
needed to describe (i) has length nm, while the key needed to
describe (ii) has length n + m (which is usually smaller than nm).
For an extreme case, consider what happens when m is a factor
of n (or the other way around). Then the cipher (ii) is equivalent
to a Vigenère cipher with keylength n, so the additional Vigenère
cipher of keylength m adds no additional security. Here is a spe-
cific example: if in (ii) n = 4 and m = 2, and the corresponding
keywords are gold and be, then the cipher (ii) is just the Vigenère
cipher whose keyword is hsmh (this is simply the ciphertext when
the Vigenère cipher with keyword be is applied to the plaintext
gold), which is much less secure than a Vigenère cipher with a
key of length nm = 8. In general, the effective keylength of the
cipher (ii) will be the least common multiple of n and m, so (ii)
will compare better with (i), in terms of security, in cases where
n and m do not share many common factors. But even when n
and m have no common factors (other than 1), so that the effec-
tive single Vigenère cipher keylength in (ii) is nm, the system (i)
has many more actual Vigenère cipher keys than the effective
length mn keys resulting from (ii). In particular, the individual
characters in (i) can be chosen randomly, but those in (ii) cannot
be made to have a random pattern.

31. Such a system has perfect secrecy. With the knowledge of just
one letter of ciphertext, any of the 26 possible plaintext letters is
equally possible.

Chapter 2
1. (a) False

(b) True
(c) False

