Contents

Preface xiii
About the Author xix
Dependency Chart xxi

Chapter 1: Logic and Sets 1

1.1: Logical Operators: Statements and Truth Values, Negations, Conjunctions, and Disjunctions, Truth Tables, Conditional
Statements (Implications), Converse and Contrapositives, Logical Equivalence and Biconditionals, Hierarchy of Logical
Operators, Some Useful Logical Equivalences, Logical Implication, Proofs and Counterexamples, Logical Puzzles, Exercises, Computer Exercises

1.2: Logical Quantifiers: Predicates and Universes, Universal and Existential Quantifiers, Negations of Quantifiers, Nested Quantifiers, Exercises

1.3: Sets: Sets and Their Elements, Unions and Intersections, Venn Diagrams, Subsets and the Empty Set, Complements and Differences of Sets, Set Theoretic Identities, Unions and Intersections of Set Families, Power Sets, Cartesian Products of Sets, The Historical Development of Logic and Sets, Exercises, Computer Exercises

Chapter 2: Relations and Functions, Boolean Algebra, and Circuit Design 61

2.1: Relations and Functions: Binary Relations, Functions, Function Images and Pre-images, One-to-One, Onto, and Bijective Functions, Inverse Functions, Exercises

2.2: Equivalence Relations and Partial Orderings: Equivalence Relations, Congruence Modulo a Positive Integer, Equivalence Classes and Their Representatives, Strings, Partial Order(ings), Hasse Diagrams, Poset Isomorphisms, Exercises
2.3: Boolean Algebra and Circuit Design: Boolean Operations, Variables, and Functions, Boolean Algebra Identities, Sums, Products, and Complements of Boolean Functions, Sums of Products Expansions (Disjunctive Normal Form), Duality, Logic Gates and Circuit Designs, Karnaugh Maps, Exercises

Chapter 3: The Integers, Induction, and Recursion 111

Appendix: Recursive Definitions and Structural Induction
Computer Exercises

3.3: Some Topics in Elementary Number Theory: Divisibility, Primes, The Prime Number Theorem, Greatest Common Divisors, Relatively Prime Integers, The Division Algorithm, The Euclidean Algorithm, Congruent Substitutions in Modular Arithmetic, Fermat’s Little Theorem, Euler’s Theorem, Orders and Primitive Roots, Exercises, Computer Exercises

Appendix: Probabilistic Primality Tests

Chapter 4: Number Systems 187

4.1: Representations of Integers in Different Bases: Representation of Integers in a Base \(b \), Hexadecimal and Binary Expansions, Addition Algorithm with Base \(b \) Expansions, Subtraction Algorithm with Base \(b \) Expansions, Multiplication Algorithm in Base \(b \) Expansions, Exercises, Computer Exercises

4.3: Matrices: Matrix Addition, Subtraction, and Scalar Multiplication, Matrix Multiplication, Matrix Arithmetic, Definition of an Invertible
(Square) Matrix, The Determinant of a Square Matrix, Inverses of 2×2 Matrices, The Transpose of a Matrix, Modular Integer Matrices, The Classical Adjoint (for Matrix Inversions), Application of Modular Matrices: The Hill Cryptosystem, Exercises, Computer Exercises

4.4: Floating Point Arithmetic: Exact Arithmetic, Floating Point Arithmetic Systems, Unit Roundoff (Machine Epsilon), Underflows, Overflows, Exercises, Computer Exercises

Chapter 5: Counting Techniques, Combinatorics, and Generating Functions

5.2: Permutations, Combinations, and the Binomial Theorem: The Difference between a Permutation and a Combination, Computing and Counting with Permutations and Combinations, the Binomial Theorem, Multinomial Coefficients, The Multinomial Theorem, Exercises

Appendix: Application to Weighted Democracies

Computer Exercises

Chapter 6: Discrete Probability and Simulation

6.2: Random Numbers, Random Variables, and Basic Simulations: Probabilities as Relative Frequencies, Random Numbers and Random Variables, Binomial Random Variables, Continuous Random Variables,
Chapter 7: Complexity of Algorithms

7.2: Growth Rates of Functions and the Complexity of Algorithms: A Brief and Informal Preview, Big-O Notation, Combinations of Big-O Estimates, Big-Omega and Big-Theta Notation, Complexity of Algorithms, Optimality of the Merge Sort Algorithm, the Classes P and NP, Exercises, Computer Exercises

Chapter 8: Graphs, Trees, and Associated Algorithms

8.1: Graph Concepts and Properties: Simple Graphs, General Graphs, Degrees, Regular Graphs, and the Handshaking Theorem, Some Important Families of Simple Graphs, Bipartite Graphs, Degree Sequences, Subgraphs, Isomorphism of Simple Graphs, the Complement of a Simple Graph, Representing Graphs on Computers, Directed Graphs (Digraphs), Some Graph Models for Optimization Problems, Exercises, Computer Exercises

8.2: Paths, Connectedness, and Distances in Graphs: Paths, Circuits and Reachability in Graphs, Paths, Circuits, and Reachability in Digraphs, Connectedness and Connected Components, Distances and Diameters in Graphs, Eccentricity, Radius, and Central Vertices, Adjacency Matrices and Distance Computations in Graphs and Directed Graphs, Edge and Vertex Cuts in Connected Graphs/Digraphs, Characterization of Bipartite Graphs Using Cycles, Exercises, Computer Exercises

Appendix: Application of Rooted Trees to Data Compression and Coding; Huffman Codes
Chapter 9: Graph Traversal and Optimization Problems

9.1: Graph Traversal Problems: Euler Paths and Tours and the Origin of Graph Theory, Euler Paths and Tours in Digraphs, Application of Eulerian Digraphs: De Bruijn Sequences, Hamilton Paths and Tours, Application of Hamiltonian Graphs: Gray Codes, Sufficient Conditions for a Graph to Be Hamiltonian, Necessary Conditions for a Graph to Be Hamiltonian, Exercises, Computer Exercises

9.2: Tree Growing and Graph Optimization Algorithms: Minimum Spanning Tree for an Edge-Weighted Graph, Tree Growing Meta-Algorithm, Prim’s Algorithm for Minimum Spanning Trees, Dijkstra’s Algorithm for Shortest Distances in an Edge-Weighted Connected Graph, Depth-First Searches and Breadth-First Searches, The Traveling Salesman Problem, Insertion Heuristics for the Traveling Salesman Problem, Performance Guarantees for Insertion Heuristics for the Traveling Salesman Problem, Exercises, Computer Exercises

Chapter 10: Randomized Search and Optimization Algorithms

Appendix A: Pseudo Code Dictionary
Appendix B: Solutions to All Exercises for the Reader
Appendix C: Answers/Brief Solutions to Odd Numbered Exercises
References 957
Index of Theorems, Propositions, Lemmas, and Corollaries 963
Index of Algorithms 967
Index 969