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(d)  det( ) det( ) det( )A B A B  
(e)  If matrix B  is obtained from A  by replacing one row of A  by a number k  times the 
corresponding row of ,A  then det( ) det( ).B k A  
(f)  If one row of A  is a constant multiple of another row of A  then  det( ) 0A . 
(g)  Two of these identities are not quite correct, in general, but they can be corrected using 
another of these identities that is correct.  Elaborate on this.   
Suggestion: For part (f) automate the experiment as follows:  After a random integer matrix A  
is built, randomly select a first row number 1r  and a different second row number 2r .  Then 
select randomly an integer k  in the range  
[ 9, 9]. Replace the row 2r  with k  times row 1r .  This will be a good possible way to create 
your test matrices.   Use a similar selection process for part (e).    

 
11. (a)  Prove that  matrix addition is commutative  A B B A  whenever A  and B  are two 

matrices of the same size.  (This is identity (5) in the text.) 
(b)  Prove that  matrix addition is associative,  ( ) ( )A B C A B C  whenever ,  ,A B  and 
C are matrices of the same size. (This is the first part of identity (6) in the text.) 

 
12. (a) Prove that the distributive laws for matrices: ( )A B C AB AC  and 

( )A B C AC BC , whenever the matrices are of appropriate sizes so that a particular 
identity makes sense.  (These are identities (7) in the text.) 
(b)  Prove that for any real number , we have that ( )A B A B , whenever ,  ,A B  
and C are matrices of the same size and that ( ) ( ) ( )AB A B A B  whenever A  and B  
are matrices with AB  defined.  (These are identities (8) in the text.) 

 
13. Prove that matrix multiplication is associative, ( ) ( )AB C A BC  whenever ,  ,  and A B C  are 

matrices so that both sides are defined.  (This is the second part of identity (6) in the text.) 
 
14. (Discovering Facts about Matrices)  As we have seen, many matrix rules closely resemble 

corresponding rules of arithmetic.  But one must be careful since there are some exceptions.  
One such notable exception we have encountered is that, unlike regular multiplication, matrix 
multiplication is not commutative; that is, in general we cannot say that .AB BA  For each of 
the statements below about matrices, either give a counterexample, if it is false, or give a proof 
if it is true.  In each identity, assume that the matrices involved can be any matrices for which 
the expressions are all defined.  Also, we use 0 to denote the zero matrix (i.e., all entries are 
zeros). 
(a)  0 0.A  
(b)  If 0,AB  then either 0A  or 0.B  

(c)  If  2 0,A  then 0.A  
(d) ( )AB B A   (recall A  denotes the transpose of A ). 

(e) 2 2 2( ) .AB A B  

(f)  If A  and B  are invertible square matrices, then so is AB  and 1 1 1( ) .AB B A  
Suggestion: If you are uncertain of any of these, run some experiments first (as shown in some 
of the preceding exercises).  If your experiments produce a counterexample, you have disproved 
the assertion.  In such a case you merely record the counterexample and move on to the next 
one.   

 
 
7.2:  INTRODUCTION TO COMPUTER GRAPHICS AND ANIMATION 
 
Computer graphics is the generation and transformation of pictures on the 
computer.  This is a hot topic that has important applications in science and 
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business as well as in Hollywood (computer special effects and animated films).  
In this section we will show how matrices can be used to perform certain types of 
geometric operations on “objects.”  The objects can be either two- or three-
dimensional but most of our illustrations will be in the two-dimensional plane.  
For two-dimensional objects, the rough idea is as follows.  We can represent a 
basic object in the plane as a MATLAB graphic by using the command 
plot(x,y), where x  and y  are vectors of the same length.  We write x  and y  
as row vectors, stack x  on top of ,y  and we get a 2 n  matrix A where n  is the 
common length of x  and .y  We can do certain mathematical operations to this 
matrix to change it into a new matrix 1,A whose rows are the corresponding vertex 
vectors 1 and 1.x y  If we look at plot(x1,y1), we get a transformed version of 
the original geometrical object.    Many interesting geometric transformations can 
be realized by simple matrix multiplications, but to make this all work nicely we 
will need to introduce a new artificial third row of the matrix ,A  that will simply 
consist of 1’s.  If we work instead with these so-called homogeneous coordinates, 
then all of the common operations of scaling (vertically or horizontally), shifting, 
rotating, and reflecting can be realized by matrix multiplications of these 
homogeneous coordinates.  We can mix and repeat such transformations to get 
more complicated geometric transformations; and by putting a series of such plots 
together we can even make movies.  Another interesting application is the 
construction of fractal sets.  Fractal sets (or fractals) are beautiful geometric 
objects that enjoy a certain “self-similarity property,” meaning that no matter how 
closely one magnifies and examines the object, the fine details will always look 
the same.     
 
  Polygons, which we recall are planar regions bounded by a finite set of line 
segments, are represented by their vertices.  If we store the -coordinatesx  of these 
vertices and the -coordinatesy of these vertices as separate vectors (say the first 
two rows of a matrix) preserving the order of adjacency, then MATLAB’s plot 
command can easily plot the polygon.  
 
EXAMPLE 7.3:  We consider the following 
“CAT” polygon shown in Figure 7.2.  Store the 
x-coordinates of the vertices of the CAT as the 
first row vector of a matrix ,A  and the 
corresponding y-coordinates as the second row 
of the same matrix in such a way that MATLAB 
will be able to reproduce the cat by plotting the 
second row vector of A  versus the first.  
Afterwards, obtain the plot from MATLAB. 
 
SOLUTION:  We can store these nine vertices 
in a 2 10  matrix A  (the first vertex appears 
twice so the polygon will be closed when we 
plot it).  We may start at any vertex we like, but 

 
 
FIGURE 7.2:  CAT graphic for 
Exampe 7.3. 
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we must go around the cat in order (either clockwise or counterclockwise).  Here 
is one such matrix that begins at the vertex (0,0) and moves clockwise around the 
cat.  
 
>> A=[0  0  .5  1  2  2.5  3  3  1.5  0; ... 
     0  3  4   3  3   4   3  0  -1   0]; 
 
To reproduce the cat, we plot the second row of A  (the y’s) versus the first row 
(the x ’s): 
 
>> plot(A(1,:), A(2,:)) 
 
  In order to get the cat to fit nicely in the viewing area (recall, MATLAB always 
sets the view area to just accommodate all the points being plotted), we reset the 
viewing range to 2 5, 3 6,x y  and then use the equal setting on the 
axes so the cat will appear undistorted.    
 
>> axis([-2 5 -3 6]) 
>> axis('equal') 
 
The reader should check how each of the last two commands changes the cat 
graphic; we reproduce only the final plot in Figure 7.3(a).  Figure 7.3 actually 
contains two cats, the original one (white) as well as a gray cat.  The gray cat was 
obtained in the same fashion as the orginal cat, except that the plot command 
was replaced by the fill command, which works specifically with polygons and 
whose syntax is as follows: 
 

 
 
fill(x,y,color)  

Here x and y are vectors of the -x  and -coordinatesy of a polygon 
(preserving adjacency order); color can be either one of the 
predefined plot colors (as in Table 1.1) in single quotes, (e.g., k 
would be a black fill) or an RGB-vector [   ]r g b (with ,  ,  and r g b  
each being numbers in [0,1]) to produce any color; for example, [.5 
.5 .5] gives medium gray. 

 
The elements ,  ,  and  r g b  in a color vector determine the amounts of red, green, 
and blue to use to create a color; any color can be created in this way.  For 
example, [   ]r g b [1 0 0] would be a pure-red fill; magenta is obtained with the 
rgb vector [1 0 1], and different tones of gray can be achieved by using equal 
amounts of red, green, and blue between [0  0  0] (black) and [1 1 1] (white).   
 
For the gray cat in Figure 7.3(b), we used the command fill(A(1,:), 
A(2,:), [.5 .5 .5]).  To get a black cat we could either set the rgb vector 
to [0 0 0] or replace it with k, which represents the preprogrammed color character 
for black (see Table 1.1). 
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FIGURE 7.3: Two MATLAB versions of the cat polygon: (a) (left) the first  white cat was 
obtained using the plot command and (b) (right) the second with the fill command. 
 
 
EXERCISE FOR THE READER 7.3:  After experimenting a bit with rgb color 
vectors, get MATLAB to produce an orange cat, a brown cat, and a purple cat.  
Also, try and find the rgb color vector that best matches the MATLAB built-in 
color cyan (from Table 1.1, the symbol for cyan is c).   
 

  A linear transformation L on the plane 2R  
corresponds to a 2 2  matrix M (Figure 7.4).  It 
transforms any point ( , )x y  (represented by the 

column vector x
y ) to the point xM y  obtained 

by multiplying it on the left by the matrix M .  The 
reason for the terminology is that a linear 
transformation preserves the two important linear 
operations for vectors in the plane:  addition and 
scalar multiplication.   That is, letting 

1 2
1 2

1 2
,x xP Py y  be two points in the plane 

(represented by column vectors), and writing ( ) ,L P MP  the linear 
transformation axioms can be expressed as follows:   
 

 

 
  Both of these are to be valid for any choice of vectors ( 1, 2)iP i  and scalar .   
Because  ( )L P  is just MP (the matrix M  multiplied by the matrix P ), these two 
identities are consequences of the general properties (7) and (8) for matrices.  By 
the same token, if M is any n n  matrix, then the transformation L(P) = MP 

 
 

FIGURE 7.4:  A linear 
tranformation L in the plane. 
 

1 2 1 2( ) ( ) ( ),L P P L P L P  (9) 

1 1( ) ( ).L P L P  (10) 
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defines a linear transformation (satisfying (9) and (10)) for the space nR  of n-
length vectors.  Of course, most of our geomtric applications will deal with the 
cases 2n  (the plane) or 3n  (3-dimensional ( , , )x y z space).   
 
  Such tranformations and their generalizations are a basis for what is used in 
contemporary interactive graphics programs and in the construction of computer 
videos.   If, as in the above example of the CAT, the vertices of a polygon are 
stored as columns of a matrix ,A  then, because of the way matrix multiplication 
works, we can transform each of the vertices at once by multiplying the matrix M  
of a linear transformation by .A   The result will be a new matrix containing the 
new vertices of the transformed graphic, which can be easily plotted.   
 
  We now move on to give some important examples of  transformations on the 
plane 2.R  
 

(1)  Scalings:  For 0,  0a b  the linear 
transformation 

' 0
' 0

x a x ax
y b y by  

will scale the horizontal direction with 
respect to 0x  by a factor of a and the 
vertical direction with respect to 0y  by 
a factor of .b   If either factor is < 1, there 
is contraction (shrinkage) toward 0 in the 
corresponding direction, while factors > 1 
give rise to an expansion (stretching) away 
from 0 in the corresponding direction.    
As an  example, we use 0.3a  and 1b  
to rescale our original CAT (Figure 7.5). 
We assume we have left in the graphics window the first (white) cat of Figure 
7.3(a). 
  
>>M=[.3 0; 0 1]; %store scaling matrix 
>>A1=M*A; %create the vertex matrix of the transformed cat; 
>>hold on  %leave the original cat in the window so we can compare 
>>plot(A1(1,:), A1(2,:), 'r') %new cat will be in red 
 

Caution:  Changes in the axis ranges can also produce scale changes in MATLAB 
graphics. 
 
(2)  Rotations:   For a rotation angle , the linear tranformation that rotates a point 
( , )x y  an angle  (counterclockwise) around the origin (0,0) is given by the 
following linear tranformation:   

' cos sin
' sin cos

x x
y y . 

 
 
FIGURE 7.5:  The scaling of the 
original cat using factors a = 0.3 for 
horizontal scaling and b = 1 (no 
change) for vertical scaling has 
produced the narrow-faced cat.   
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(See Exercise 12 for a justification of this.)  As an example, we rotate the original 
cat around the origin using angle / 4  (Figure 7.6).  Once again, we assume 
the graphics window initially contains the original cat of Figure 7.3 before we start 
to enter the following MATLAB commands: 
 
>> M=[cos(-pi/4) -sin(-pi/4); sin(-pi/4) cos(-pi/4)]; 
>> A1=M*A;, hold on,plot(A1(1,:), A1(2,:), 'r') 
 

(3)  Reflections:   The linear tranformation that reflects points over the -axisx is 
given by 

' 1 0
' 0 1

x x x
y y y . 

Similary, to reflect points across the -axis,y  the linear transformation will use the 

matrix 1 0
0 1M .  As an  example, we reflect our original CAT over the 

-axisy  (Figure 7.7).  We assume we have left in the graphics window the first cat 
of Figure 7.3. 
 
>> M=[-1 0; 0 1]; 
>> A1=M*A; hold on, plot(A1(1,:), A1(2,:), 'r') 
 

 

 

 
 

(4)  Shifts:  Shifts are very simple and important transformations that are not linear 
transformations.  For a fixed (shift) vector 0 0 0( , ) (0,0)V x y  that we identify, 

when convenient, with the column vector 0

0

x
y , the shift transformation 

0VT  

associated with the shift vector 0V  is defined as follows: 
 

0 0 0 0( , ) ( , ) ( , ) ( , ).Vx y T x y x y V x x y y  

 
 
FIGURE 7.6:  The rotation (red) of the 
original CAT (blue) using angle 

/ 4 .  The point of rotation  is the 
origin (0,0).   
 

 
 
FIGURE 7.7:  The reflection (left) of the 
original CAT across the y-axis.   
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  What the shift transformation does is 
simply move all -coordinatesx  by 0x  units 
and move all -coordinatesy  by 0y  units.   
As an example we show the outcome of 
applying the shift transformation (1,1)T  to 
our familiar CAT graphic.  Rather than a 
matrix multiplication with the 2 10  CAT 
vertex matrix, we will need to add the 
corresponding 2 10  matrix, each of 
whose 10 columns is the shift column 

vector 1
1  that we are using (Figure 7.8).  

Once again, we assume the graphics 
window initially contains the original 
(white) CAT of Figure 7.3 before we start 
to enter the following MATLAB commands (and that the CAT vertex matrix A  is 
still in the workspace). 
  
>>size(A) %check size of A     ans = 2    10 
>> V=ones(2,10); A1=A+V; hold on, plot(A1(1,:),A1(2,:), 'r') 
 
EXERCISE FOR THE READER 7.4:  Explain why the shift transformation is 
never a linear transformation.   
 
  It is unfortunate that the shift transformation cannot be realized as a linear 
transformation, so that we cannot realize it as using a 2 2  matrix multiplication 
of our vertex matrix.  If we could do this, then all of the important transformations 
mentioned thus far could be done in the same way and it would make 
combinations (and in particular making movies) an easier task.  Forturnately there 
is a way around this using so-called homogeneous coordinates.   We first point out 
a more general type of transformation than a linear transformation that includes all 
linear transformations as well as the shifts.  We define it only on the two-
dimensional space 2 ,R  but the definition carries over in the obvious way to the 
three-dimensional space 3R  and higher-dimensional spaces as well.  An affine 
transformation on 2R  equals a linear tranformation and/or a shift (applied 
together).  Thus, an affine transformation can be written in the form: 
 

0
0

0
.xx x a b xM Vy y c d y y  

 
(11) 

The homogeneous coordinates of a point/vector x
y  in 2R  is the point/vector 

1

x
y  in 3.R   Note that the third coordinate of the identified three-dimensional 

point is always 1 in homogeneous coordinates.  Geometrically, if we identify a 

 
 
FIGURE 7.8:  The shifted CAT (upper 
right) came from the original CAT 
using a shift vector (1,1).  So the cat 
was shifted one unit to the right and 
one unit up.   
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point ( , )x y  of 2R  with the point ( , ,0)x y  in 3R  (i.e., we identify 2R  with the 
plane 0z  in 3R ), then homogeneous coordinates simply lift all of these points 
up one unit to the plane 1z .  It may seem at first glance that homogeneous 
coordinates are making things more complicated, but the advantage in computer 
graphics is given by the following result. 
 
THEOREM 7.2:  (Homogeneous Coordinates) Any affine transformation on 2R  
is a linear transformation if we use homogeneous coordinates.  In other words, any 
affine transformation T  on 2R  can be expressed using homogeneous coordinates 
in the form: 

1 1 1

x x x
y T y H y  

 
 (12) 

 
(matrix multiplication), where H  is some 3 3  matrix.   
 
Proof:  The proof of the theorem is both simple and practical; it will show how to 
form the matrix H  in (12) from the parameters in (11) that determine the affine 
transformation.   

Case 1:  T  is a linear transformation on 2R  with matrix a bM c d , i.e., 

x x a b xT My y c d y  (no shift).  In this case, the transformation can be 

expressed in homogeneous coordinates as: 
 

0
0

1 1 1 10 0 1

x x a b x x
y T y c d y H y . 

 
   (13) 

 

To check this identity, we simply perform the matrix multiplication: 
 

0 0
0 0

1 1 0 0 10 0 1

x a b x ax by x xax byy c d y cx dy Mcx dyy y , 

 

as desired.    

Case 2:  T is a shift transformation on 2R   with shift vector 0
0

0

xV y , that is, 

0

0

xx xT y y y  (so the matrix M  in (12) is the identity matrix).  In this 

case, the transformation can be expressed in homogeneous coordinates as: 
 



7.2:  Introduction to Computer Graphics and Animation   165 
 

0

0

1 0
0 1

1 1 1 10 0 1

xx x x x
y T y y y H y . 

 
(14) 

 
We leave it to the reader to check, as was done in Case 1, that this homogeneous 
coordinate linear transformation does indeed represent the shift. 
 
Case 3:   The general case  (linear transformation plus shift); 

  0

0

xx x x a b xTy y y c d y y , 

can now be realized by putting together the matrices in the preceding two special 
cases: 
 

0

0
1 1 1 10 0 1

a b xx x x x
y T y c d y y H y . 

 
(15) 

 
We leave it to the reader check this (using the distributive law (7)).   
 
  The basic transformations that we have so far mentioned can be combined to 
greatly expand the mutations that can be performed on graphics.  Furthermore, by 
using homogeneous coordinates, the matrix of such a combination of  basic 
transformations can be obtained by simply multiplying the matrices by the 
individual basic transformations that are used, in the correct order, of course.  The 
next example illustrates this idea. 
 
EXAMPLE 7.4:  Working in homogeneous coordinates, find the transformation 
that will rotate the CAT about the tip of its chin by an angle of 90 .  Express the 
transformation using the 3 3  matrix M  for homogeneous coordinate 
multiplication, and then get MATLAB to create a plot of the transformed CAT 
along with the original.   
 
SOLUTION:  Since the rotations we have previously introduced will always rotate 
around the origin (0,0), the way to realize this transformation will be by combining 
the following three transformations (in order): 
(i) First shift coordinates so that the chin gets moved to (0,0).  Since the chin has 
coordinates (1.5, 1),  the shift vector should be the opposite so we will use the 
shift transformation  

( 1.5,1) 1

1 0 1.5
~ 0 1 1

0 0 1
T H  

(the tilde notation is meant to indicate that the shift transformation is represented 
in homogeneous coordinates by the given 3 3  matrix 1H , as specified by (14)). 
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(ii) Next rotate (about (0,0)) by 90 .  This rotation transformation R has 
matrix 

0 1cos( 90 ) sin( 90 )
sin( 90 ) cos( 90 ) 1 0 , 

 

and so, by (13), in homogeneous coordinates is represented by 
 

2

0 1 0
~ 1 0 0

0 0 1
R H . 

 

(iii)  Finally we undo the shift that we started with in (i), using 

(1.5, 1) 3

1 0 1.5
~ 0 1 1

0 0 1
T H . 

 

If we multiply each of these matrices (in order) on the left of the original 
homogeneous coordinates, we obtain the transformed homogeneous coordinates: 
 

3 2 1
1 1 1

x x x
y H H H y M y ,   

that is, the matrix M  of the whole transformation is given by the product 
3 2 1H H H .  We now turn things over to MATLAB to compute the matrix M  and 

to plot the before and after plots of the CAT.   
 
>> H1=[1 0 -1.5; 0 1 1; 0 0 1]; H2=[0 1 0; -1 0 0; 0 0 1];  
>> H3=[1 0 1.5;0 1 -1; 0 0 1]; 
>> format rat %will give a nicer display of the matrix M 
>> M=H3*H2*H1 

M =      0            1           5/2      
    -1            0           1/2      
     0            0            1       

 
We will multiply this matrix M  by the 
matrix AH  of homogeneous 
coordinates corresponding to the matrix 

.A   To form ,AH  we simply need to 
tack on a row of ones to the bottom of 
the matrix .A (See Figure 7.9.) 
 
>> AH=A; %start with A 
>> size(A) %check the size of A      

ans =  2    10       
>> AH(3,:)=ones(1,10); %form the  
>> %appropriately sized third row  
>> %for AH 
>> size(AH) ans = 3      10       
>> hold on, AH1=M*AH; 
>> plot(AH1(1,:), AH1(2,:), 'r') 
 
 

 
 
FIGURE 7.9:  The red CAT was obtained 
from the blue cat by rotating 90  about 
the chin.  The plot was obtained using 
homogeneous coordinates in Example 7.3. 
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EXERCISE FOR THE READER 7.5:    Working in homogeneous coordinates,  
(a) find the transformation that will shift the CAT one unit to the right and then 
horizontally expand it by a factor of 2 (about 0x ) to make a “fat CAT”.  Express 
the transformation using the 3 3  matrix M  for homogeneous coordinate 
multiplication, and then use MATLAB to create a plot of the transformed fat cat 
along with the original.   
(b) Next, find four transformations each shifting the cat by one of the following 
shift vectors ( 1, 1)  (so that all four shift vectors are used) after having rotated 
the CAT about the central point (1.5, 1.5) by each of the following angles: 30  for 
the upper-left CAT, 30  for the upper-right CAT,  45  for the lower-left cat, 
and 45  for the lower-right cat.  Then fill in the four cats with four different 
(realistic cat) colors, and include the graphic.   
 
  We now show how we can put graphics transformations together to create a 
movie in MATLAB.  This can be done in the following two basic steps: 
 
STEPS FOR CREATING A MOVIE IN MATLAB: 
Step 1:  Construct a sequence of MATLAB graphics that will make up the frames 
of the movie.  After the thj frame is constructed, use the command M(:,j)= 
getframe; to store the frame as the thj  column of some (movie) matrix M . 
Step 2:  To play the movie, use the command movie(M, rep, fps), where M 
is the movie matrix constructed in step 1, rep is a positive integer giving the 
number of times the movie is to be (repeatedly) played, and fps denotes a 
positive integer giving the speed, in “frames per second,” at which the movie is to 
be played. 
 

  Our next example gives a very simple 
example of a movie.  The movie star 
will of course be the CAT, but this time 
we will give it eyes (Figure 7.10).  For 
this first example, we do not use matrix 
transformations, but instead we directly 
edit (via a loop) the code that generates 
the graphic.  Of course, a textbook 
cannot play the movie, so the reader is 
encouraged to rework the example in 
front of the computer and thus replay 
the movie.   
 
EXAMPLE 7.5:  Modify the CAT 
graphic to have a black outline, to have 
two circular eyes (filled in with yellow), 

with two smaller black-filled pupils at the center of the eyes.  Then make a movie 
of the cat closing and then reopening its eyes. 
 

 
 
FIGURE 7.10:  The original CAT of 
Example 7.3 with eyes added, the star of 
our first cat movie.  
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SOLUTION:  The strategy will be as follows:  To create the new CAT with the 
specified eyes, we use the “hold on” command after having created the basic CAT.  
Then we fill in yellow two circles of radius 0.4 centered at (1, 2) (left eye) and 
at (2, 2) (right eye); after this we fill in black two smaller circles with radii 0.15 at 
the same centers (for the pupils).  The circles will actually be polygons obtained 
by parametric equations.  To gradually close the eyes, we use a for loop to create 
CATs with the same outline but whose eyes are shrinking only in the vertical 
direction.   
 
  This could be done with homogeneous coordinate transforms (that would shrink 
in the y direction each eye but maintain the centers—thus it would have to first 
shift the eyes down to 0,y  shrink and then shift back), or alternatively we could 
just directly modify the y  parametric equations of each eye to put a shrinking 
scaling factor in front of the sine function to turn the eyes both directly into a 
shrinking (and later expanding) sequence of ellipses.  We proceed with the second 
approach.   Let us first show how to create the CAT with the indicated eyes.  We 
begin with the original CAT (this time with black line color rather than blue), 
setting the axis options as previously, and then enter hold on.  Assuming this 
has been done, we can create the eyes as follows: 
 
>> t=0:.02:2*pi;  %creates time vector for parametric equations  
>> x=1+.4*cos(t); y=2+.4*sin(t); %creates circle for left eye  
>> fill(x,y,'y') %fills in left eye 
>> fill(x+1,y, 'y') %fills in right eye 
>> x=1+.15*cos(t); y=2+.15*sin(t); %creates circle for left pupil 
>> fill(x,y,'k') %fills in left pupil 
>> fill(x+1,y,'k') %fills in right pupil 
 
  To make the frames for our movie (and to “get” them), we employ a for loop that 
goes through the above construction of the “CAT with eyes”, except that a factor 
will be placed in front of the sine term of the -coordinatesy  of both eyes and 
pupils.  This factor will start at 1, shrink to 0, and then expand back to the value of 
1 again.   To create such a factor, we need a function with starting value 1 that 
decreases to zero, then turns around and increases back to 1.  One such function 
that we can use is (1 cos ) / 2x  over the interval [0, 2 ].   Below we give one 
possible implementation of this code: 
 
>>t=0:.02:2*pi; counter=1; 
>>A=[0  0  .5  1  2  2.5  3  3  1.5  0;... ... 
     0  3  4   3  3   4   3  0  -1   0]; 
>>x=1+.4*cos(t); xp=1+.15*cos(t); 
>>for s=0:.2:2*pi 
 factor = (cos(s)+1)/2; 
 plot(A(1,:), A(2,:), 'k') 
 axis([-2 5 -3 6]), axis('equal') 
 y=2+.4*factor*sin(t); yp=2+.15*factor*sin(t); 
 hold on 
 fill(x,y,'y'), fill(x+1,y, 'y'), fill(xp,yp,'k'), fill(xp+1,yp,'k') 
 M(:, counter) = getframe; 
 hold off, counter=counter+1; 
end 
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The movie is now ready for screening.  To view it the reader might try one (or 
both) of the following commands. 
 
>> movie(M,4,5) %slow playing movie, four repeats 
>> movie(M,20,75) %much faster play of movie, with 20 repeats 
 
EXERCISE FOR THE READER 
7.6:  (a) Create a MATLAB function 
M-file, called mkhom(A), that takes 
a 2 m  matrix of vertices for a 
graphic (first row has x-coordinates 
and second row has corresponding y-
coordinates) as input and outputs a 
corresponding 3 m  matrix of 
homogeneous coordinates for the 
vertices.   
(b)  Create a MATLAB function M-
file, called  rot(Ah,x0,y0, 
theta) that has inputs, Ah,  a 
matrix of homogeneous coordinates 
of some graphic, two real numbers, 
x0, y0 that are the coordinates of 
the center of rotation, and theta , the angle (in radians) of rotation.  The output 
will be the homogeneous coordinate vertex matrix gotten from Ah by rotating the 
graph  an angle theta about the point ( 0, 0).x y  
 
EXERCISE FOR THE READER 7.7:  (a)  Recreate the above movie working in 
homogeneous coordinate transforms on the eyes.   
(b) By the same method, create a similar movie that stars a more sophisticated cat, 
replete with whiskers and a mouth, as shown in Figure 7.11.  In this movie, the cat 
starts off frowning and the pupils will shift first to the left, then to the right, then 
back to center and finally up, down and back to center again, at which point the cat 
will wiggle its whiskers up and down twice and change its frown into a smile.   
 
  Fractals or fractal sets are complicated and interesting sets (in either the plane 
or three-dimensional space) that have the self-similarity property that if one 
magnifies a certain part of the fractal (any number of times) the details of the 
structure will look exactly the same.    
 
  The computer generation of fractals is also a hot research area and we will look at 
some of the different methods that are extensively used.  Fractals were gradually 
discovered by mathematicians who were specialists in set theory or function 
theory, including (among others) the very famous Georg F. L. P. Cantor 
(1845 1918, German),  Waclaw Sierpinski (1882 1969, Polish), Gaston Julia 
(1893 1978, French) and Giuseppe Peano (1858 1932, Italian) during the late 
nineteenth and early twentieth centuries.  Initially, fractals came up as being 
pathological objects without any type of unifying themes.  Many properties of 

 
 
FIGURE 7.11:  The more sophisticated cat 
star of the movie in Exercise for the Reader 
7.7 (b). 
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factals that have shown them to be so useful in an assortment of fields were 
discovered and popularized by the Polish/French mathematician Benoit 
Mandelbrot(Figure 7.12).3   The precise definition of a fractal set takes a lot of 
preliminaries; we refer to the references, for example, that are cited in the footnote 
on this page for details.  Instead of this, we will jump into some examples.  The 
main point to keep in mind is that all of the examples we give (in the text as well 
as in the exercises) are actually impossible to print out exactly because of the self-
similarity property; the details would require a printer with infinite resolution. 
Despite this problem, we can use loops or recursion with  MATLAB to get some 
decent renditions of fractals that, as far as the naked eye can tell (your printer’s 
resolution permitting),  will  be accurate illustrations. 
Fractal sets are usually best described by an iterative 
procedure that runs on forever.   
 
EXAMPLE 7.6:  (The Sierpinski Gasket)   To 
obtain this fractal set, we begin with an equilateral 
triangle that we illustrate in gray in Figure 7.13(a); 
we call this set the zeroth generation.  By 
considering the midpoints of each of the sides of 
this triangle, we can form four (smaller) triangles 
that are similar to the original. One is upside-down 
and the other three have the same orientation as the 
original.  We delete this central upside down 
subtriangle from the zeroth generation to form the 
first generation (Figure 7.13(b)). 
 
 

 

3 Mandelbrot was born in Poland in 1924 and his family moved to France when he was 12 years old.  
He was introduced to mathematics by his uncle Szolem Mandelbrojt, who was a mathematics professor 
at the Collège de France.  From his early years, though, Mandelbrot showed a strong preference for 
mathematics that could be applied to other areas rahter than the pure and rather abstruse type of 
mathematics on which his uncle was working.  Since World War II was taking place during his school 
years, he often was not able to attend school and as a result much of his education was done at home 
through self-study.  He attributes to this informal education the development of his strong geometric 
intuition.  After earning his Ph.D. in France he worked for a short time at Cal Tech and the Institute for 
Advanced Study (Princeton) for postdoctoral work.  He then returned to France to work at the Centre 
National de la Recherche Scientifique.  He stayed at this post for only three years since he was finding 
it difficult to fully explore his creativity in the formal and traditional mathematics societies that 
dominated France in the mid-twentieth century (the “Bourbaki School”).  He returned to the United 
States, taking a job as a research fellow with the IBM research laboratories.  He found the atmosphere 
extremely stimulating at IBM and was able to study what he wanted.  He discovered numerous 
applications and properties of fractals; the expanse of applications is well demonstrated by some of the 
other joint appointments he has held while working at IBM. These include Professor of the Practice of 
Mathematics at Harvard University, Professor of Engineering at Yale, Professor of Economics at 
Harvard, and Professor of Physiology at the Einstein College of Medicine.   Many books have been 
written on fractals and their applications.  For a very geometric and accessible treatment (with lots of 
beautiful pictures of fractals) we cite [Bar-93], along with [Lau-91]; see also [PSJY-92].  More analytic 
(and mathematically advanced) treatments are nicely done in the books [Fal-85] and  [Mat-95].   

 
 
FIGURE 7.12:  Benoit 
Mandelbrot (b. 1924) Polish/ 
French mathematician.  
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                 (a)                                          (b)                                           (c) 
 

FIGURE 7.13:  Generation of the Sierpinski gasket of Example 7.6:  (a) the zeroth 
generation (equilateral triangle), (b) first generation, (c) second generation.  The generations 
continue on forever to form the actual set.  
 

 
  Next, on each of the three (equilateral) triangles that make up this first 
generation, we again perform the same procedure of deleting the upside-down 
central subtriangle to obtain the generation-two set (Figure 7.13(c)).  This process 
is to continue on forever and this is how the Sierpinski gasket set is formed.  The 
sixth generation is shown in Figure 7.14.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 7.14:  Sixth generation of the Sierpinski gasket fractal of Example 7.6. 
 
 
  Notice that higher generations become indistinguishable to the naked eye, and 
that if we were to focus on one of the three triangles of the first generation, the 
Sierpinski gasket looks the same in this triangle as does the complete gasket.  The 
same is true if we were to focus on any one of the nine triangles that make up the 
second generation, and so on.   
 
EXERCISE FOR THE READER 7.8:  (a) Show that the nth generation of the 
Sierpinski triangle is made up of 3n  equilateral triangles.  Find the area of each of 
these nth-generation triangles, assuming that the initial sidelengths are one.  
(b) Show that the area of the Sierpinski gasket is zero. 
NOTE:  It can be shown that the Sierpinski gasket has dimension log 4 / log3  

1.2618... , where the dimension of a set is a rigorously defined measure of its 
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true size.  For example, any countable union of line segments or smooth arcs is of 
dimension one and the inside of any polygon is two-dimensional.  Fractals have 
dimensions that are nonintegers.  Thus a fractal in the plane will have dimension 
somewhere (strictly) between 1 and 2 and a fractal in three-dimensional space will 
have dimension somewhere strictly between 2 and 3.  None of the standard sets in 
two and three dimensions have this property.  This noninteger dimensional 
property is often used as a definition for fractals.  The underlying theory is quite 
advanced; see [Fal-85] or [Mat-95] for more details on these matters. 
 
  In order to better understand the self-similarity property of fractals, we first recall 
from high-school geometry that two triangles are similar if they have the same 
angles, and consequently their corresponding sides have a fixed ratio.  A 
similarity transformation (or similitude for short) on 2R  is an affine 
transformation made up of one or more of the following special transformations:  
scaling (with both -x and -factorsy  equal), a reflection, a rotation, and/or a shift.  
In homogeneous coordinates, it thus follows that a similitude can be expressed in 
matrix form as follows: 
 

0

0

cos sin
sin cos ,

1 1 1 10 0 1

s s xx x x x
y T y s s y y H y  

 
 (16) 

 

where s  can be any nonzero real number and the signs in the second row of H  
must be the same.  A scaling with both -x  and -factorsy  being equal is 
customarily called a dilation.  
 
EXERCISE FOR THE READER 7.9:  (a) Using Theorem 7.2 (and its proof), 
justify the correctness of (16).   
(b) Show that for any two similar triangles in the plane there is a similitude that 
transforms one into the other.   
(c) Show that if any particular feature (e.g., reflection) is removed from the 
definition of a similitude, then two similar triangles in the plane can be found, 
such that one cannot be transformed to the other by this weaker type of 
transformation.   
 
  The self-similarity of a fractal means, roughly, that for the whole fractal (or at 
least a critical piece of it), a set of similitudes 1 2, , , KS S S  can be found (the 
number K  of them will depend on the fractal) with the following property:  All 

jS ’s  have the same scaling factor 1s  so that F can be expressed as the union of 
the transformed images ( )i iF S F  and these similar (and smaller) images are 
essentially disjoint in that different ones can have only vertex points or boundary 
edges in common.  Many important methods for the computer generation of 
fractals will hinge on the discovery of these similitudes 1 2, , , KS S S .  Finding 
them also has other uses in both the theory and application of fractals.  These 
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concepts will be important in Methods 1 and 2 in our solution of the following 
example.   
 
EXAMPLE 7.7:  Write a MATLAB function M-file that will produce graphics for 
the Sierpinski gasket fractal.   
 
SOLUTION:  We deliberately left the precise syntax of the M-file open since we 
will actually give three different approaches to this problem and produce three 
different M-files.  The first method is a general one that will nicely take advantage 
of the self-similarity of the Sierpinski gasket and will use homogeneous coordinate 
transform methods.  It was, in fact, used to produce high-quality graphic of Figure 
7.14.   Our second method will illustrate a different approach, called the Monte 
Carlo method, that will involve an iteration of a random selection process to 
obtain points on the fractal, and will plot each of the points that get chosen.  
Because of the randomness of selection, enough iterations produce a reasonably 
representative sample of points on the fractal and the resulting plot will give a 
decent depiction of it.  Monte Carlo is a city on the French Riviera known for its 
casinos (it is the European version of Las Vegas).  The method gets its name from 
the random (chance) selection processes it uses.  Our third method works similarly 
to the first but the ideas used to create the M-file are motivated by the special 
structure of the geometry, in this case of the triangles. 
 

Method 1:  The Sierpinski gasket has 
three obvious similitudes, each of 
which transforms it into one of the 
three smaller “carbon copies” of it 
that lie in the three triangles of the 
first generation (see Figure 7.15).  
These similitudes have very simple 
form, involving only a dilation (with 
factor 0.5) and shifts.  The first 
transformation 1S  involves no shift.  
Referring to the figure, it is clear that 

2S  must shift 1V  to the midpoint of 
the line segment 1 2VV  that is given by 
(as a vector) 1 2( ) / 2.V V .  The shift 
vector needed to do this, and hence 

the shift vector for 2S   is 2 1( ) / 2.V V   (Proof:  If we shift 1V  by this vector we get 

1 2 1 2 1( ) / 2 ( ) / 2.)V V V V V   Similarly the shift vector for 3S  is 3 1( ) / 2.V V   It 
follows that the corresponding matrices for these three similitudes are as given 
below:   

3 12 1

1 2 2 1 3 3 1

.5 0 ( (1) (1)) / 2.5 0 ( (1) (1)) / 2.5 0 0
~ 0 .5 0 , ~ 0 .5 ( (2) (2)) / 2 , ~ 0 .5 ( (2) (2)) / 2 .

0 0 1 0 0 1 0 0 1

V VV V
S S V V S V V

 

 
 
FIGURE 7.15:  The three natural similitudes 

1 2 3, ,S S S   for the Sierpinski gasket with 
vertices 1 2 3, ,V V V  shown on the zeroth and 
first generations.  Since the zeroth generation 
is an equilateral triangle, so must be the three 
triangles of the first generation. 
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Program 7.1,  sgasket1 (V1,V2,V3,ngen), has four input variables: V1, 
V2, V3 should be the row vectors representing the vertices (0,0),  (1, 3), (2,0)  of 
a particular equilateral triangle, and ngen is the generation number of the 
Sierpinski gasket to be drawn.  The program has no output variables, but will 
produce a graphic of this generation ngen of the Sierpinski gasket.  The idea 
behind the algorithm is the following.  The three triangles making up the 
generation-one gasket can be obtained by applying each of the three special 
similitudes 1 2 3, ,S S S  to the single generation-zero Gasket.  By the same token, 
each of the nine triangles that comprise the generation-two gasket can be obtained 
by applying one of the similitudes of 1 2 3, ,S S S  to one of the generation-one 
triangles.  In general,  the triangles that make up any generation gasket can be 
obtained as the union of the triangles that result from applying each of the 
similitudes 1 2 3, ,S S S  to each of the previous generation triangles.  It works with 

the equilateral triangle having vertices (0,0), (1, 3), (2,0) .  The program makes 
excellent use of recursion.  
  
PROGRAM 7.1:  Function M-file for producing a graphic of any generation of the 
Sierpinski gasket on the special equilateral triangle with vertices (0,0),(1, 3),(2,0)   
(written with comments in a way to make it easily modified to work for other fractals). 
function sgasket1(V1,V2,V3,ngen) 
%input variables: V1,V2,V3 should be the vertices [0 0], [1,sqrt(3)], 
%and [2,0] of a particular equilateral triangle in the plane taken as 
%row vectors, ngen is the number of iterations to perform in 
%Sierpinski gasket generation.  
%The gasket will be drawn in medium gray color. 
 
%first form matrices for similitudes 
   S1=[.5 0 0;0 .5 0;0 0 1]; 
   S2=[.5 0 1; 0 .5 0;0 0 1]; 
   S3=[.5 0 .5; 0 .5 sqrt(3)/2;0 0 1]; 
    
if ngen == 0 
   %Fill triangle 
 fill([V1(1) V2(1) V3(1) V1(1)], [V1(2) V2(2) V3(2) V1(2)], [.5 .5 
.5]) 
 hold on 
else  
%recursively invoke the same function on three outer subtriangles 
%form homogeneous coordinate matrices for three vertices of triangle 
   A=[V1; V2; V3]'; A(3,:)=[1 1 1]; 
   %next apply the similitudes to this matrix of coordinates 
   A1=S1*A; A2=S2*A; A3=S3*A; 
%finally, reapply sgasket1 to the corresponding three triangles with 
%ngen bumped down by 1.  Note, vertex vectors have to be made into 
%row vectors using '(transpose).   
   sgasket1(A1([1 2],1)', A1([1 2],2)', A1([1 2],3)', ngen-1) 
   sgasket1(A2([1 2],1)', A2([1 2],2)', A2([1 2],3)', ngen-1) 
   sgasket1(A3([1 2],1)', A3([1 2],2)', A3([1 2],3)', ngen-1) 
end 
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To use this program to produce, for example, the generation-one graphic of Figure 
7.13(b), one need only enter: 
 
>> sgasket1([0 0], [1 sqrt(3)], [2 0], 1) 
  
If we wanted to produce a graphic of the more interesting generation-six 
Sierpinski gasket of Figure 7.15, we would have only to change the last input 
argument from 1 to 6.  Note, however, that this function left the graphics window 
with a hold on.  So before doing anything else with the graphics window after 
having used it, we would need to first enter hold off.  Alternatively, we could 
also use the following command: 
 

clf     Clears the graphics window.   
 
In addition to recursion, the above program makes good use of MATLAB’s 
elaborate matrix manipulation features.  It is important that the reader fully 
understands how each part of the program works.  To this end the following 
exercise should be useful. 
 
EXERCISE FOR THE READER 7.10:  (a) Suppose the above program is invoked 
with these input variables: 1 [0 0],V 2V [1 3 ], 3 [2 0],V  ngen = 1.  On the 
first run/iteration, what are the numerical values of each of the following variables:   
A, A1, A2, A3, A1([1 2],2), A3([1 2],3)? 
(b) Is it possible to modify the above program so that after the graphic is drawn, 
the screen will be left with hold off?  If yes, show how to do it; if not, explain. 
(c) In the above program, the first three input variables 1, 2, 3V V V  seem a bit 
redundant since we are forced to input them as the vertices of a certain triangle 
(which gave rise to the special similitudes 1,  2,  and 3).S S S   Is it possible to 
rewrite the program so that it has only one input variable ngen?  If yes, show how 
to do it; if not, explain. 
 
Method 2:   The Monte Carlo method also will use the special similitudes, but its 
philosophy is very different from that of the first method.  Instead of working on a 
particular generation of the Sierpinki gasket fractal, it goes all out and tries to 
produce a decent graphic of the actual fractal.  This gets done by plotting a 
representative set of points on the fractal, a random sample of such.  Since so 
much gets deleted from the original triangle, a good question is What points 
exactly are left in the Sierpinski gasket?  Certainly the vertices of any triangle of 
any generation will always remain.  Such points will be the ones from which the 
Monte Carlo method samples.  Actually there are a lot more points in the fractal 
than these vertices, although such points are difficult to write down.  See one of 
the books on fractals mentioned earlier for more details.  
 
  Here is an outline of how the program will work.  We start off with a point we 
call “Float” that is a vertex of the original (generation-zero) triangle, say V1.  We 
then randomly choose one of the similitudes from 1 2 3, ,S S S , and apply this to 
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“Float” to get a new point “New,” that will be the corresponding vertex of the 
generation-one triangle associated with the similitude that was used (lower left for 

1S , upper middle for 3S , and lower right for 2S ).  We plot “New,” redefine 
“Float” = “New,” and repeat this process, again randomly selecting one of the 
similitudes to apply to “Float” to get a new point “New” of the fractal that will be 
plotted.  At the Nth iteration, “New” will be a vertex of one of the Nth-generation 
triangles (recall there are 3N  such triangles) that will also lie in one of the three 
generation-one triangles, depending on which of 1 2 3, ,S S S  had been randomly 
chosen.  Because of the randomness of choices at each iteration, the points that are 
plotted usually give a decent rendition of the fractal, as long as a large enough 
random sample is used (i.e., a large number of iterations). 
 
PROGRAM 7.2:  Function M-file for producing a Monte Carlo approximation graphic of 
Sierpinski gasket, starting with the vertices V1, V2, and V3 of any equilateral triangle 
(written with comments in a way that will make it easily modified to work for other 
fractals). 
 

function [ ] = sgasket2(V1,V2,V3,niter) 
%input variables: V1,V2,V3 are vertices of an equilateral triangle in  
%the plane taken as row vectors, niter is the number of iterations 
%used to obtain points in the fractal.  The output will be a plot of 
%all of the points.  If niter is not specified, the default value  
%of 5000 is used.   
%if only 3 input arguments are given (nargin==3), set niter to 
%default  
if nargin == 3, niter = 5000; end 
 
%Similitude matrices for Sierpinski gasket.  
S1=[.5 0 0;0 .5 0;0 0 1]; 
S2=[.5 0 (V2(1)-V1(1))/2; 0 .5 (V2(2)-V1(2))/2;0 0 1]; 
S3=[.5 0 (V3(1)-V1(1))/2; 0 .5 (V3(2)-V1(2))/2;0 0 1];  
 
%Probability vector for Sierpinski gasket has equal probabilities 
%(1/3)for choosing one of the three similitudes.   
P = [1/3 2/3]; 
 
%prepare graphics window for repeated plots of points 
clf, axis('equal'); hold on; 
 
%introduce "floating point" (can be any vertex) in homogeneous 
%coordinates 
Float=[V1(1);V1(2);1]; 
i = 1; %initialize iteration counter 
 
%Begin iteration for creating new floating points and plotting each 
%one that arises. 
while i <= niter 
   choice = rand;     
   if choice < P(1);         
      New = S1 * Float;        
      plot (New(1), New(2));      
   elseif choice < P(2);         
      New = S2 * Float;         
      plot (New(1), New(2));       
   else       New = S3 * Float;       
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      plot (New(1), New(2));       
   end;    
   Float=New;    i = i + 1; 
end 
hold off 
 
Unlike the last program, this one allows us to input the vertices of any equilateral 
triangle for the generation-zero triangle.   The following two commands will 
invoke the program first with the default 5000 iterations and then with 20,000 (the 
latter computation took several seconds).   
 
>> sgasket2([0 0], [1 sqrt(3)], [2 0])  
>> sgasket2([0 0], [1 sqrt(3)], [2 0], 20000) 
 
The results are shown in Figure 7.16.   The following exercise should help the 
reader better undertstand how the above algorithm works.  
 
EXERCISE FOR THE READER 7.11:  Suppose that we have generated the 
following random numbers (between zero and one):  .5672,  .3215,  .9543,  .4434, 
.8289,  .5661 (written to 4 decimals). 
(a) What would be the corresponding sequence of similitudes chosen in the above 
program from these random numbers? 
(b)  If we used the vertices [0 0], [1 sqrt(3)], [2 0]   in the above program, find the 
sequence of different “Float” points of the fractal that would arise if the above 
sequence of random numbers were to come up. 
(c)  What happens if the vertices entered in the program sgasket2 are those of a 
nonequilateral triangle?  Will the output ever look anything like a Sierpinski 
gasket?  Explain. 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 7.16:  Monte Carlo renditions of the Sierpinski gasket via the program 
sgasket2.  The left one (a) used 5000 iterations while the right one (b) used 20,000 and 
took noticeably more time. 
 
Method 3:  The last program we write here will actually be the shortest and most 
versatile of the three.  Its drawback is that, unlike the other two, which made use 
of the specific similitudes associated with the fractal, this program uses the special 
geometry of the triangle and thus will be more difficult to modify to work for other 
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fractals.  The type of geometric/mathematical ideas present in this program, 
however, are useful in writing other graphics programs.  The program 
sgasket3(V1,V2,V3,ngen) takes as input three vertices V1, V2, V3 of a 
triangle (written as row vectors), and a positive integer ngen.  It will produce a 
graphic of the ngen-generation Sierpinski gasket, as did the first program.  It is 
again based on the fact that each triangle from a positive generation gasket comes 
in a very natural way from the triangle of the previous generation in which it lies. 
Instead of using similitudes and homogeneous coordinates, the program simply 
uses explicit formulas for the vertices of the (N + 1)st-generation triangles that lie 
within a certain Nth-generation triangle.  Indeed, for any triangle from any 
generation of the Sierpinski gasket with vertices 1 2 3, , ,V V V  three subtriangles of 
this one form the next generation (see Figure 7.15), each has one vertex from this 
set, and the other two are the midpoints from this vertex to the other two.  For 
example (again referring to Figure 7.15) the lower-right triangle will have vertices  

2V , 1 2( ) / 2V V  = the midpoint of 2 1V V , and 2 3( ) / 2V V  = the midpoint of 2 3V V .  
This simple fact, plus recursion, is the idea behind the following program. 
 
PROGRAM 7.3:  Function M-file for producing a graphic of any generation of the 
Sierpinski gasket for an equilateral triangle with vertices V1, V2, and V3. 
function sgasket3(V1,V2,V3,ngen) 
%input variables: V1,V2,V3 are vertices of a triangle in the plane, 
%written as row vectors, ngen is the generation of Sierpinski gasket  
%that will be drawn in medium gray color. 
if ngen == 0 
%Fill triangle 
 fill([V1(1) V2(1) V3(1) V1(1)],... 
 [V1(2) V2(2) V3(2) V1(2)], [.5 .5 .5]) 
   hold on 
   else  
%recursively invoke the same function on three outer subtriangles 
   sgasket3(V1, (V1+V2)/2, (V1+V3)/2, ngen-1) 
   sgasket3(V2, (V2+V1)/2, (V2+V3)/2, ngen-1) 
   sgasket3(V3, (V3+V1)/2, (V3+V2)/2, ngen-1) 
end 
   
EXERCISE FOR THE READER 7.12:  (a) What happens if the vertices entered in 
the program sgasket3 are those of a nonequilateral triangle?  Will the output 
ever look anything like a Sierpinski gasket?  Explain. 
(b) The program sgasket3 is more elegant than sgasket1 and it is also more 
versatile in that the latter program applies only to a special equilateral triangle.  
Furthermore, it also runs quicker since each iteration involves less computing.  
Justify this claim by obtaining some hard evidence by running both programs (on 
the standard equilateral triangle of sgasket1) and comparing tic/toc and 
flop counts (if available) for each program with the following values for ngen:  1, 
3, 6, 8, 10.   
 
  Since programs like the one in Method 3 of the above example are usually the 
most difficult to generalize, we close this section with yet another exercise for the 
reader that will ask for such a program to draw an interesting and beautiful fractal 
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known as the von Koch4 snowflake, which is illustrated in Figure 7.17.  The 
iteration scheme for this fractal is shown in Figure 7.18. 
 
EXERCISE FOR THE READER 7.13:  Create a MATLAB function, call it 
snow(n),  that will input a positive integer n and will produce the nth generation 
of the so-called von Koch snowflake fractal.    Note that we start off (generation 0) 
with an equilateral triangle with sidelength 2.  To get from one generation to the 
next, we do the following:  For each line segment on the boundary, we put up (in 
the middle of the segment) an equilateral triangle of 1/3 the sidelength.  This 
construction is illustrated in Figure 7.18, which contains the first few generations 
of the von Koch snowflake.   Run your program (and include the graphical 
printout) for the values: 1,  2,  and 6.n n n  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 7.17:  The von Koch snowflake fractal.  This illustration was produced by the 
MATLAB program snow(n) of Exercise for the Reader 7.13, with an input value of 6 
(generations).  
 
 
Suggestions:  Each generation can be obtained by plotting its set of vertices (using 
the plot command).  You will need to set up a for loop that will be able to produce 
the next generation’s vertices from those of a given generation.  It is helpful to 
think in terms of vectors. 
 

 
4 The von Koch snowflake was introduced by Swedish mathematician Niels F. H. von Koch 
(1870 1924) in a 1906 paper Une méthode géométrique élémentaire pour l'étude de certaines 
questions de la théorie des courbes planes.  In it he showed that the parametric equations for the curve 
(x(t), y(t)) give an example of functions that are everywhere continuous but nowhere differentiable.  
Nowhere differentiable, everywhere continuous functions had been first discovered in 1860 by German 
mathematician Karl Weierstrass (1815 1897), but the constructions known at this time all involved 
very complicated formulas. Von Koch’s example thus gives a curve (of infinite arclength) that is 
continuous everywhere (no breaks), but that does not have a tangent line at any of its points.  The von 
Koch snowflake has been used in many areas of analysis as a source of examples.   
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Generation 0n snowflake:         Generation 1n snowflake: 
 
 
 
 
 
 
 
 
     
Generation 2n snowflake:               Generation 3n snowflake: 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 7.18:  Some initial generations of the von Koch snowflake.  Generation zero is an 
equilateral triangle (with sidelength 2).  To get from any generation to the next, each line 
segment on the boundary gets replaced by four line segments each having 1/3 of the length 
of the original segment.  The first and fourth segments are at the ends of the original 
segment and the middle two segments form two sides of an equilateral triangle that 
protrudes outward.    
 
 
EXERCISES  7.2: 
 

NOTE:  In the problems of this section, the “CAT” refers to the graphic of Example 7.2 (Figure 7.3(a)), 
the “CAT with eyes” refers to the enhanced version graphic of Example 7.5 (Figure 7.10), and the “full 
CAT” refers to the further enhanced CAT of Exercise for the Reader 7.7(b) (Figure 7.11).   When asked 
to print a certain transformation of any particular graphic (like the CAT) along with the original, make 
sure to print the original graphic in one plotting style/color along with the transformed graphic in a 
different plotting style/color.  Also, in printing any graphic, use the axis(equal) setting to prevent 
any distortions and set the axis range to accommodate all of the graphics nicely inside the bounding 
box  
 
1. Working in homogeneous coordinates, what is the transformation matrix M that will scale the 

CAT horizontally by a factor of 2 (to make a “fat CAT”) and then shift the cat vertically down a 
distance 2 and horizontally 1 unit to the left?  Create a before and after graphic of the CAT. 

 
2. Working in homogeneous coordinates, what is the transformation matrix M  that will double the 

size of the horizontal and vertical dimensions of the CAT and then rotate the new CAT by an 
angle of 45 about the tip of its left ear (the double-sized cat’s left ear, that is)?  Include a 
before-and-after graphic of the CAT. 
 

3. Working in homogeneous coordinates, what is the transformation matrix M that will shift the 
left eye and pupil of the “CAT with eyes” by 0.5 units and then expand them both by a factor of 
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2 (away from the centers)?  Apply this transformation just to the left eye.  Next, perform the 
analogous transformation to the CAT’s right eye and then plot these new eyes along with the 
outline of the CAT, to get a cat with big eyes.     

 
4. Working in homogeneous coordinates, what is the transformation matrix M that will shrink the 

“CAT with eyes”’s left eye and left pupil by a factor of 0.5 in the horizontal direction (toward 
the center of the eye) and then rotate them by an angle of 25 ?  Apply this transformation just 
to the left eye, reflect to get the right eye, and then plot these two along with the outline of the 
CAT, to get a cat with thinner, slanted eyes.     

 
5. (a)  Create a MATLAB function M-file, called reflx(Ah, x0) that has inputs, Ah, a matrix 

of homogeneous coordinates of some graphic, and a real number x0.  The output will be the 
homogeneous coordinate vertex matrix obtained from Ah by reflecting the graphic over the 
line 0x x .  Apply this to the CAT graphic using 0 2,x and give a before-and-after plot.   
(b)  Create  a  similar  function  M-file refly(Ah, y0) for  vertical  reflections (about the 
horizontal line 0y y ) and apply to the CAT using 0 4y to create a before and after plot. 

 
6. (a)  Create a MATLAB function M-file, called shift(Ah,x0,y0) that has as inputs Ah, a 

matrix of homogeneous coordinates of some graphic, and a pair of real numbers x0,y0.  The 
output will be the homogeneous coordinate vertex matrix obtained from Ah by shifting the 
graphic using the shift vector (x0,y0).  Apply this to the CAT graphic using x0 = 2 and y0 =  

1 and give a before-and-after plot.   
(b)  Create a MATLAB function M-file, called scale(Ah,a,b,x0,y0) that has inputs Ah,  
matrix of homogeneous coordinates of some graphic, positive numbers: a and b that represent 
the horizontal and vertical scaling factors, and a pair of real numbers x0, y0 that represent the 
coordinates about which the scaling is to be done.    The output will be the homogeneous 
coordinate vertex matrix obtained from Ah by scaling the graphic as indicated.   Apply this to 
the CAT graphic using a = .25, b = 5 once each with the following sets for ( 0, 0) :x y (0,0), (3,0), 
(0,3), (2.5,4) and create a single plot containing the original CAT along with all four of these 
smaller, thin cats (use five different colors/plot styles).   

 
7. Working in homogeneous coordinates, what is the transformation matrix M that will reflect an 

image about the line y x ?  Create a before-and-after graphic of the CAT. 
Suggestion:  Rotate first, reflect, and then rotate back again.    

 
8. Working in homogeneous coordinates, what is the transformation matrix M that will shift the 

left eye and left pupil of the “CAT with eyes’’ to the left by .0.5 units and then expand them by 
a factor of 2 (away from the centers)?  Apply this transformation just to the left eye, reflect to 
get the right eye, and then plot these two along with the outline of the “CAT with eyes,” to get a 
cat with big eyes.     

 
9. The shearing on 2R  that shears by b in the x-direction and d in the y-direction is the linear 

transformation whose matrix is 1
1
b

c .  Apply the shearing to the CAT using several different 

values of b  when 0,c  then set 0b  and use several different values of ,c  and finally apply 
some shearings using several sets of nonzero values for b  and .c  

 
 

10. (a) Show that the 2 2  matrix cos sin
sin cos , which represents the linear transformation for 

rotations by angle , is invertible, with inverse being the corresponding matrix for rotations by 
angle . 
(b) Does the same relationship hold true for the corresponding 3 3  homogeneous coordinate 
transform matrices? Justify your answer.   
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11. (a) Show that the 3 3  matrix 

0
0

1 0
0 1 ,
0 0 1

x
y  which represents the shift with shift vector 0

0
,x

y  

is invertible, with its inverse being the corresponding matrix for the shift using the opposite shift 
vector.    

 

12.  Show that the 2 2  matrix cos sin
sin cos  indeed represents the linear transformation for 

rotations by angle  around the origin (0,0).  
Suggestion:  Let ( , )x y  have polar coordinates ( , )r ; then ( , )x y has polar coordinates 
( , )r . Convert the latter polar coordinates to rectangular coordinates.   

 
13. (Graphic Art:  Rotating Shrinking Squares)  (a) By starting off with a square, and repeatedly 

shrinking it and rotating it, get MATLAB to create a graphic similar to the one shown in Figure 
7.19(a).   
(b) Next modify your construction to create a graph similar to the one in Figure 7.19(b) but that 
uses alternating colors.   
Note:  This object is not a fractal.    

       
 

FIGURE 7.19:  A rotating and shrinking square of Exercise 13:  (a)  (left) with no fills; (b) 
(right) with alternate black-and-white fills. 

 
 
14. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Graphic Art:  Cat with Eyes Mosaic)  The cat mosaic of Figure 7.20 has been created by taking 
the original CAT, and creating new pairs of cats (left and right) for each step up.  This 
construction was done with a for loop using 10 iterations (so there are 10 pairs of cats above the 
original), and could easily have been changed to any number of iterations.  Each level upward of 
cats got scaled to 79% of the preceding level.  Also, for symmetry, the left and right cats were 
shifted upward and to the left and right by the same amounts, but these amounts got smaller 
(since the cat size did) as we moved upward. 
(a)  Use MATLAB to create a picture that is similar to that of Figure 7.20, but replace the “CAT 
with eyes” with the ordinary CAT. 
(b)  Use MATLAB to create a picture that is similar to that of Figure 7.20.   
(c)  Use MATLAB to create a picture that is similar to that of Figure 7.20, but replace the “CAT 
with eyes” with the “full CAT” of Figure 7.11. 
Suggestion:  You should definitely use a for loop.  Experiment a bit with different schemes for 
horizontal and vertical shifting to get your picture to look like this one.   
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FIGURE 7.20:  CAT with eyes mosaic for Exercise 14(b).   The original cat (center) has been 
repeatedly shifted to the left and right, and up, as well as scaled by a factor of 79% each time we 
go up.   

 

15. (Movie:  “Sudden Impact”) (a)  Create a movie that stars the CAT and proceeds as follows:   
The cat starts off  at the left end of the screen.  It then “runs” horizontally towards the right end 
of the screen.  Just as its right side reaches the right side of the screen, it begins to shrink 
horizontally (but not vertically) until it degenerates into a vertical line segment on the right side 
of the screen.    
(b) Make a movie similar to the one in part (a) except that this one stars the “CAT with eyes” 
and before it begins to run to the right, its pupils move to the right of the eyes and stay there.    
(c) Make a film similar to the one in part (b) except that this one should star the “full CAT” 
(Figure 7.11) and upon impact with the right wall, the cat’s smile changes to a frown.   

 
16. (Movie:  “The Chase”) (a)  Create a movie that stars the “CAT with eyes” and co-stars another 

smaller version of the same cat (scaled by factors of 0.5 in both the x- and y-directions).  The 
movie starts off with the big cat in the upper left of the screen and the small cat to its right side 
(very close).  Their pupils move directly toward one another to the end of the eyes, and at this 
point both cats begin moving at constant speed toward the right.  When the smaller cat reaches 
the right side of the screen, it starts moving down while the big cat also starts moving down.  
Finally, cats stay put in the lower-right corner as their pupils move back to center.    
(b) Make the same movie except starring the “full CAT” and costarring a smaller counterpart.    

 
17. 
 
 

(Movie:  “Close Encounter”) (a)  Create a movie that stars the “full CAT” (Figure 7.11) and 
with the following plot:  The cat starts off smiling and then its eyes begin to shift all the way to 
the lower left.  It spots a solid black rock moving horizontally directly toward its mouth level, at 
constant speed.  As the cat spots this rock, its smile changes to a frown.  It jumps upward as its 
pupils move back to center and just misses the rock as it brushes just past the cat’s chin.   The 
cat then begins to smile and falls back down to its original position.   
(b)  Make a film similar to the one in part (a) except that it has the additional feature that the 
rock is rotating clockwise as it is moving horizontally.   
(c)  Make a film similar to the one in part (b) except that it has the additional feature that the 
cat’s pupils, after having spotted the rock on the left, slowly roll (along the bottom of the eyes) 
to the lower-right postion, exactly following the rock.  Then, after the rock leaves the viewing 
window, have the cat’s pupils move back to center postion.    
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18. (Fractal Geometry:  The Cantor Square)  The Cantor square is a fractal that starts with the unit 

square in the plane: 0 {( , ) : 0 1 and 0 1}C x y x y  (generation zero).  To move to the 
next generation, we delete from this square all points such that at least one of the coordinates is 
inside the middle 1/3 of the original spread.  Thus, to get 1C  from 0,C  we delete all the points 

( , )x y having either 1/ 3 2 / 3x  or 1/ 3 2 / 3y .  So 1C  will consist of four smaller 

squares each having sidelength equal to 1/3 (that of 0C ) and sharing one corner vertex with 

0.C   Future generations are obtained in the same way.  For example, to get from 1C  (first 

generation) to 2C (second generation) we delete, from each of the four squares of 1,C  all points 
( , )x y  that have one of the coordinates lying in the middle 1/3 of the original range (for a 
certain square of 1C ).  What will be left is four squares for each of the squares of 1,C  leaving a 

total of 16 squares each having sidelength equal to 1/3 that of the squares of 1,C  and thus equal 
to 1/9.  In general, letting this process continue forever, it can be shown by induction that the 
nth-generation Cantor square consists of 4n  squares each having sidelength 1/ 3 .n   The Cantor 
square is the set of points that remains after this process has been continued indefinitely. 
(a) Identify the four similitudes 1 2 3 4, , ,S S S S  associated with the Cantor square (an illustration 
as in Figure 7.16 would be fine) and then, working in homogeneous coordinates, find the 
matrices of each.   Next, following the approach of Method 1 of the solution of Example 7.7, 
write a function M-file cantorsq1(V1,V2,V3,V4, ngen),  that takes as input the 
vertices V1 = [0 0], V2 = [1 0], V3 = [1 1], and V4 = [0 1] of the unit 
square and a nonnegative integer ngen and will produce a graphic of the generation ngen 
Cantor square. 
(b) Write a function M-file cantorsq2(V1,V2,V3,V4, niter) that takes as input the 
vertices V1, V2, V3 V4 of any square and a positive integer niter and will produce a Monte 
Carlo generated graphic for the Cantor square as in Method 2 of the solution of Example 7.7.  
Run your program for the square having sidelength 1 and lower-left vertex ( 1,2) using niter  
= 2000 and niter = 12,000. 
(c) Write a function M-file cantorsq3(V1,V2,V3,V4, ngen) that takes as input the 
vertices V1, V2, V3 V4 of any square and a positive integer ngen and will produce a graphic 
for  the ngen  generation Cantor square as did cantorsq1 (but now the square can be any 
square).  Run your program for the square mentioned in part (b) first with ngen = 1 then with 
ngen = 3.  Can this program be written so that it produces a reasonable generalization of the 
Cantor square when the vertices are those of any rectangle?      

19. (Fractal Geometry:  The Sierpinski Carpet)  The Sierpinski carpet is the fractal that starts with 
the unit square {( , ) : 0 1 and 0 1}x y x y  with the central square of 1/3 the sidelength 
removed (generation zero).  To get to the next generation, we punch eight smaller squares out of 
each of the remaining eight squares of sidelength 1/3 (generation one), as shown in Figure 7.21.  
Write a function M-file, scarpet2(niter),  based on the Monte Carlo method that will take 
only a single input variable niter and will produce a Monte Carlo approximation of the 
Sierpinski carpet.  You will, of course, need to find the eight similitudes associated with this 
fractal and get their matrices in homogeneous coordinates.  Run your program with inputs 
niter  = 1000, 2000, 5000, and 10,000. 
 
 
 
 
 
 
 
FIGURE 7.21:  Illustration of generations zero (left), one (middle), and two (right) of the 
Sierpinski gasket fractal of Exercises 19, 20, and 21.  The fractal consists of the points that 
remain (shaded) after this process has continued on indefinitely.   
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20. (Fractal Geometry:  The Sierpinski Carpet) Read first Exercise 19 (and see Figure 7.21), and if 
you have not done so yet, identify the eight similitudes 1 2 8, , ,S S S  associated with the 
Sierpinski carpet along with the homogeneous coordinate matrices of each.   Next, following the 
approach of Method 1 of the solution of Example 7.7, write a function M-file 
scarpet1(V1,V2,V3,V4, ngen)  that takes as input the vertices V1 = [0 0], V2 = 
[1 0], V3 = [1 1], and V4 = [0 1] of the unit square and a nonnegative integer 
ngen and will produce a graphic of the generation ngen Cantor square. 
Suggestions:   Fill in each outer square in gray, then to get the white central square “punched 
out,” use the hold on and then fill in the smaller square in the color white (rgb vector [1 1 
1]).  When MATLAB fills a polygon, by default it draws the edges in black.  To suppress the 
edges from being drawn, use the following extra option in the fill commands: fill(xvec, 
yvec, rgbvec, 'EdgeColor', 'none').  Of course, another nice way to edit a 
graphic plot from MATLAB is to import the file into a drawing software (such as Adobe 
Illustrator or Corel Draw) and modify the graphic using the software.  

  
21. (Fractal Geometry:  The Sierpinski Carpet) (a) Write a function M-file called 

scarpet3(V1,V2,V3,V4, ngen) that works just like the program scarpet1 of the 
previous exercise, except that the vertices can be those of any square.  Also, base the code not 
on similitudes, but rather on mathematical formulas for next-generation parameters in terms of 
present-generation parameters.  The approach should be somewhat analogous to that of Method 
3 of the solution to Example 7.7.  
(b) Is it possible to modify the sgasket1 program so that it is able to take as input the vertices 
of any equilateral triangle?  If yes, indicate how.  If no, explain why not.  

 
22. (Fractal Geometry:  The Fern Leaf) There are more general ways 

to construct fractals than those that came up in the text.  One 
generalization of the self similarity approach given in the text 
allows for transformations that are not invertible (similitudes 
always are).  In this exercise you are to create a function M-file, 
called fracfern(n), which will input a  positive integer n and 
will produce a graphic for the fern fractal pictured in Figure 7.22, 
using the Monte Carlo method.  For this fractal the four 
transformations to use are (given by their homogeneous 
coordinate matrices) 

0 0 0 .85 .04 0
1 0 .16 0 , 2 .04 .85 1.6 ,

0 0 1 0 0 0
S S  

.2 .26 0 .15 .28 0
3 .23 .22 1.6 , 4 .26 .24 .44 ,

0 0 1 0 0 1
S S  

and the associated probability vector is [ .01   .86   .93]  (i.e., in 
the Monte Carlo process, 1% of the time we choose S1,  85% of the time we choose S2, 7% of 
the time we choose S3, and the remaining 7% of the time we choose S4).       
Suggestion:  Simply modify the program sgasket2 accordingly. 

 

 
FIGURE 7.22:  The 
fern leaf fractal. 

 
23. (Fractal Geometry:  The Gosper Island) (a) Write a function M-file gosper(n) that will input 

a positive integer n and will produce a graphic of the nth generation of the Gosper island 
fractal, which is defined as follows:  Generation zero is a regular hexagon (with, say, unit side 
lengths).   To get from this to generation one, we replace each of the six sides on the boundary 
of generation zero with three new segments as shown in Figure 7.23.   The first few generations 
of the Gosper island are shown in Figure 7.24. 
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FIGURE 7.23:  Iteration scheme for the definition of the Gosper island fractal of Exercise 23.  
The dotted segment represents a segment of a certain generation of the Gosper island, and the 
three solid segments represent the corresponding part of the next generation.   
 

                     
 
 
 
 
 

FIGURE 7.24:  Four different generations of 
the Gosper island fractal of Exercise 23.  In 
order of appearance, they are (a) the zeroth 
generation (regular hexagon), (b) the first, (c) 
the second, and (d) the fifth generation.   
 

 
 
 
 
 
 
(b)  (Tessellations of the Plane)  It is well known that the only regular polygons that can 
tessellate (or tile) the plane are the equilateral triangle, the square, and the regular hexagon 
(honeybees have figured this out).  It is an interesting fact that any generation of the Gosper 
island can also be used to tessellate the plane, as shown in Figure 7.25.  Get MATLAB to 
reproduce each of tessellations that are shown in Figure 7.25.  
 

 
 
FIGURE 7.25:  Tessellations with generations of Gosper islands.  The top one (with regular 
hexagons) is the familiar honeycomb structure.   

 
 
7.3:  NOTATIONS AND CONCEPTS OF LINEAR SYSTEMS 
 
The general linear system in n variables 1 2, , , nx x x  and n equations can be 
written as 
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EFR 7.3:  Using the fill command as was done in the text to get the gray cat of Figure 7.3(b), you 
can get those other-colored cats by simply replacing the RGB vector for gray by the following:  Orange 

 RGB = [1  .5   0],  Brown    RGB = [.5  .25  0],   Purple    RGB = [.5 0  .5].   Since each of these 
colors can have varying shades, your answers may vary.  Also, the naked eye may not be able to 
distinguish between colors arising from small perturbations of these vectors (say by .001 or even .005).   
The RGB vector representing MATLAB’s cyan is RGB = [0 1 1].  
EFR 7.4:  By property (10) (of linear transformations):  1 1( ) ( );L P L P   if we put 0 , we get 

that (0) 0L  (where 0 is the zero vector).  But a shift transformation 
0 0( , ) ( , )VT x y x y V  satisfies 

0 0 0(0) 0 .VT V V    So the shift transformation 
0VT  being linear would force 0 0,V  which is not 

allowed in the definition of a shift transformation (since then 
0VT would then just be the identity 

transformation).   
 
EFR 7.5:  (a) As in the solution of Example 7.4, we individually multiply out the homogeneous 
coordinate transformation matrices (as per the instructions in the proof of Theorem 7.2) from right to 

left.  The first transformation is the shift with vector (1,0) with matrix: (1,0) 1

1 0 1
~ 0 1 0 .

0 0 1
T H   After 

this we apply a scaling S whose matrix is given by 2

2 0 0
~ 0 1 0 .

0 0 1
S H   The homogeneous 

cooordinate matrix for the composition of these two transformations is:  

2 1

2 0 0 1 0 1 2 0 2
0 1 0 0 1 0 0 1 0 .
0 0 1 0 0 1 0 0 1

M H H    We assume (as in the text) that we have left in the 

graphics window the first (white) cat of Figure 7.3(a) and that the CAT matrix A is still in our 
workspace.   The following commands will now produce the new “fat CAT”: 
>> H1=[1 0 1;0 1 0; 0 0 1]; H2=[2 0 0;0 1 0;0 0 1]; M=H2*H1 
>> AH=A; AH(3,:)=ones(1,10);  %homogenize the CAT matrix 
>> AH1=M*AH; % homogenized “fat CAT” matrix 
>> hold on 
>> plot(AH1(1,:), AH1(2,:), 'r') 
>> axis([-2 10 -3 6]) % set wider axes to accommodate “fat CAT” 
>> axis('equal') 
 
The resulting plot is shown in the left-hand figure that follows.   
(b)  Each of the four cats needs to first get rotated by its specified angle about the same point (1.5, 1.5).  
As in the solution to Example 7.4, these rotations can be accomplished by first shifting this point to (0, 
0) with the shift ( 1.5, 1.5) ,T  then performing the rotation, and finally shifting back with the inverse 

shift (1.5,1.5).T   In homogeneous coordinates, the matrix representing this composition is (just like in the 

solution to Example 7.4): 

   
1 0 1.5 1 0 1.5cos( ) sin( ) 0
0 1 1.5 sin( ) cos( ) 0 0 1 1.5 .

0 0 10 0 1 0 0 1
M  

After this rotation, each cat gets shifted in the specified direction with ( 1, 1).T   For the colors of our 

cats let’s use the following:  black (rgb = [0 0 0]),  light gray (rgb = [.7 .7 .7]), dark gray (rgb = [.3  .3.  
.3]), and brown (rgb = [.5  .25  0]).  The following commands will then plot those cats: 
>> clf, hold on  %prepare graphic window 
>> %upper left cat,  theta = pi/6 (30 deg), shift vector = (-3, 3) 
>> c = cos(pi/6); s = sin(pi/6); 
>> M=[1 0 1.5;0 1 1.5;0 0 1]*[c -s 0;s c 0;0 0 1]*[1 0 -1.5;0 1 -
1.5;0 0 1]; 
>> AUL=[1 0 -3;0 1 3;0 0 1]*M*AH; 
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>> fill(AUL(1,:), AUL(2,:), [0 0 0]) 
>> %upper right cat,  theta = -pi/6 (-30 deg), shift vector = (3, 1) 
>> c = cos(-pi/6); s = sin(-pi/6); 
>> M=[1 0 1.5;0 1 1.5;0 0 1]*[c -s 0;s c 0;0 0 1]*[1 0 -1.5;0 1 -
1.5;0 0 1]; 
>> AUR=[1 0 1;0 1 1;0 0 1]*M*AH; 
>> fill(AUR(1,:), AUR(2,:), [.7 .7 .7]) 
>> %lower left cat,  theta = pi/4 (45 deg), shift vector = (-3, -3) 
>> c = cos(pi/4); s = sin(pi/4); 
>> M=[1 0 1.5;0 1 1.5;0 0 1]*[c -s 0;s c 0;0 0 1]*[1 0 -1.5;0 1 -
1.5;0 0 1]; 
>> ALL=[1 0 -3;0 1 -3;0 0 1]*M*AH; 
>> fill(ALL(1,:), ALL(2,:), [.3 .3 .3]) 
>> %lower right cat,  theta = -pi/4 (-45 deg), shift vector = (3, -3) 
>> c = cos(-pi/4); s = sin(-pi/4); 
>> M=[1 0 1.5;0 1 1.5;0 0 1]*[c -s 0;s c 0;0 0 1]*[1 0 -1.5;0 1 -
1.5;0 0 1]; 
>> ALR=[1 0 3;0 1 -3;0 0 1]*M*AH; 
>> fill(ALR(1,:), ALR(2,:), [.5 .25 0]) 
>> axis('equal'), axis off %see graphic w/out distraction of axes. 

  
 
EFR 7.6:  (a) This first M-file is quite straightforward and is boxed below. 
function B=mkhom(A) 
B=A; 
[n m]=size(A); 
B(3,:)=ones(1,m); 
 
(b) This M-file is boxed below. 
function Rh=rot(Ah,x0,y0,theta) 
%viz. EFR 7.6; theta should be in radians 
%inputs a 3 by n matrix of homogeneous vertex coordinates, xy 
%coordinates of a point and an angle theta.  Output is corresponding 
%matrix of vertices rotated by angle theta about (x0,y0). 
 
%first construct homogeneous coordinate matrix for shifting (x0,y0) 
to (0,0) 
SZ=[1 0 -x0;0 1 -y0; 0 0 1]; 
%next the rotation matrix at (0,0) 
R=[cos(theta) -sin(theta) 0; sin(theta) cos(theta) 0;0 0 1]; 
%finally the shift back to (x0,y0) 
SB=[1 0 x0;0 1 y0;0 0 1]; 
%now we can obtain the desired rotated vertices: 
Rh=SB*R*SZ*Ah; 
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EFR 7.7:  (a)  The main transformation that we need in this movie is vertical scaling.  To help make 
the code for this exercise more modular, we first create, as in part (b) of the last EFR, a separate M-file 
for vertical scaling: 
function Rh=vertscale(Ah,b,y0) 
%inputs a 3 by n matrix of homogeneous vertex coordinates, a (pos.) 
%numbers a for  y- scales, and an optional  arguments y0 
%for center of scaling.  Output is homogeneous coor. matrix of scaled 
%vertices.  default value of y0 is 0. 
 
if nargin <3 
    y0=0; 
end 
%first construct homogeneous coordinate matrix for shifting y=y0 to 
%y=0 
SZ=[1 0 0;0 1 -y0; 0 0 1]; 
%next the scaling matrix at (0,0) 
S=[1 0 0; 0 b 0;0 0 1]; 
%finally the shift back to y=0 
SB=[1 0 x0;0 1 y0;0 0 1]; 
%now we can obtain the desired scaled vertices: 
Rh=SB*S*SZ*Ah; 
Making use of the above M-file, the following script recreates the CAT movie of Example 7.4 using 
homogeneous coordinates: 
%script for EFR 7.6(a):  catmovieNo1.m  cat movie creation 
%Basic CAT movie, where cat closes and reopens its eyes. 
clf, counter=1; 
 
A=[0  0  .5  1  2  2.5  3  3  1.5  0; ... 
     0  3  4   3  3   4   3  0  -1   0]; %Basic CAT matrix 
Ah = mkhom(A); %use the M-file from EFR 7.6 
 
t=0:.02:2*pi;  %creates time vector for parametric equations for eyes 
xL=1+.4*cos(t); y=2+.4*sin(t); %creates circle for left eye  
LE=mkhom([xL; y]); %homogeneous coordinates for left eye 
xR=2+.4*cos(t); y=2+.4*sin(t); %creates circle for right eye 
RE=mkhom([xR; y]); %homogeneous coordinates for right eye 
xL=1+.15*cos(t); y=2+.15*sin(t); %creates circle for left pupil 
LP=mkhom([xL; y]); %homogeneous coordinates for left pupil 
xR=2+.15*cos(t); y=2+.15*sin(t); %creates circle for right pupil  
RP=mkhom([xR; y]); %homogeneous coordinates for right pupil 
 
for s=0:.2:2*pi 
 factor = (cos(s)+1)/2; 
 plot(A(1,:), A(2,:), 'k'), hold on 
 axis([-2 5 -3 6]), axis('equal') 
 LEtemp=vertscale(LE,factor,2); LPtemp=vertscale(LP,factor,2); 
 REtemp=vertscale(RE,factor,2); RPtemp=vertscale(RP,factor,2); 
 hold on 
 fill(LEtemp(1,:), LEtemp(2,:),'y'), fill(REtemp(1,:), 
REtemp(2,:),'y') 
 fill(LPtemp(1,:), LPtemp(2,:),'k'), fill(RPtemp(1,:), 
RPtemp(2,:),'k') 
 M(:, counter) = getframe; 
 hold off 
 counter=counter+1; 
end 
(b)  As in part (a), the following script M-file will make use of two supplementary M-files,  
AhR=reflx(Ah, x0) and,  AhS=shift(Ah, x0, y0), that perform horizontal reflections and 
shifts in homogeneous coordinates, respectively.  The syntaxes of these M-files are explained in 



Appendix B:  Solutions to All Exercises for the Reader 307 
 

 

Exercises 5 and 6 of this section.   Their codes can be written in a fashion similar to the code 
vertscale but for completeness are can be downloaded from the ftp site for this text (see the 
beginning of this appendix).  They can be avoided by simply performing the homogeneous coordinate 
transformations directly, but at a cost of increasing the size of the M-file that we give:     
%coolcatmovie.m: script for making coolcat movie matrix M of EFR 7.7 
 
%act one:  eyes shifting left/right 
t=0:.02:2*pi; counter=1; 
A=[0  0  .5  1  2  2.5  3  3  1.5  0; ... 
     0  3  4   3  3   4   3  0  -1   0]; 
x=1+.4*cos(t); y=2+.4*sin(t);xp=1+.15*cos(t); yp=2+.15*sin(t); 
LE=[x;y]; LEh=mkhom(LE); LP=[xp;yp]; LPh=mkhom(LP); 
REh=reflx(LEh, 1.5); RPh=reflx(LPh, 1.5); 
LW=[.3 -1; .2 -.8]; LW2=[.25 -1.1;.25 -.6]; %left whiskers 
LWh=mkhom(LW); LW2h=mkhom(LW2);  
RWh=reflx(LWh, 1.5); RW2h=reflx(LW2h, 1.5); %reflect left whiskers 
                                             %to get right ones 
M=[1 1.5 2;.25 -.25 .25]; Mh=mkhom(M);  %matrix & homogenization of 
                                         %cats mouth 
Mhrefl=refly(Mh,-.25); %homogeneous coordinates for frown  
for n=0:(2*pi)/20:2*pi 
plot(A(1,:), A(2,:),'k') 
axis([-2 5 -3 6]), axis('equal') 
hold on 
plot(LW(1,:), LW(2,:),'k'), plot(LW2(1,:), LW2(2,:),'k') 
plot(RWh(1,:), RWh(2,:),'k') 
plot(RW2h(1,:), RW2h(2,:),'k') 
plot(Mhrefl(1,:), Mhrefl(2,:),'k') 
fill(LE(1,:), LE(2,:),'y'), fill(REh(1,:), REh(2,:),'y') 
LPshft=shift(LPh,-.25*sin(n),0); RPshft=shift(RPh,-.25*sin(n),0); 
fill(LPshft(1,:), LPshft(2,:),'k'), fill(RPshft(1,:), 
RPshft(2,:),'k') 
Mov(:, counter)=getframe; 
hold off 
counter = counter +1; 
end 
 
%act two:  eyes shifting up/down 
for n=0:(2*pi)/20:2*pi 
plot(A(1,:), A(2,:),'k') 
axis([-2 5 -3 6]), axis('equal') 
hold on 
plot(LW(1,:), LW(2,:),'k'), plot(LW2(1,:), LW2(2,:),'k') 
plot(RWh(1,:), RWh(2,:),'k') 
plot(RW2h(1,:), RW2h(2,:),'k') 
plot(Mhrefl(1,:), Mhrefl(2,:),'k') 
fill(LE(1,:), LE(2,:),'y'), fill(REh(1,:), REh(2,:),'y') 
LPshft=shift(LPh,0,.25*sin(n)); RPshft=shift(RPh,0,.25*sin(n)); 
fill(LPshft(1,:), LPshft(2,:),'k'), fill(RPshft(1,:), 
RPshft(2,:),'k') 
Mov(:, counter)=getframe; 
hold off 
counter = counter +1; 
end 
 
%act three:  whisker rotating up/down then smiling 
for n=0:(2*pi)/10:2*pi 
plot(A(1,:), A(2,:),'k') 
axis([-2 5 -3 6]), axis('equal') 
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hold on 
fill(LE(1,:), LE(2,:),'y'),fill(LP(1,:), LP(2,:),'k') 
fill(REh(1,:), REh(2,:),'y'),fill(RPh(1,:), RPh(2,:),'k') 
LWrot=rot(LWh,.3,.2,-pi/6*sin(n)); LW2rot=rot(LW2h, .25,.25,-
pi/6*sin(n)); 
RWrot=reflx(LWrot, 1.5); RW2rot=reflx(LW2rot, 1.5); 
plot(LWrot(1,:), LWrot(2,:),'k'), plot(LW2rot(1,:), LW2rot(2,:),'k') 
plot(RWrot(1,:), RWrot(2,:),'k'),plot(RW2rot(1,:), RW2rot(2,:),'k') 
if n == 2*pi 
   plot(Mh(1,:), Mh(2,:),'k') 
   for n=1:10, L(:,n)=getframe; end 
   Mov(:, counter:(counter+9))=L; 
   break 
else 
   plot(Mhrefl(1,:), Mhrefl(2,:),'k') 

end 
Mov(:, counter)=getframe; 

hold off 
counter = counter +1; 
end 

%THE END 

EFR 7.8:  (a)  Certainly the zeroth generation consists of 1 = 03 triangles.  Since the sidelength is
one, and the triangle has each of its angles being / 3,   its altitude must be sin( / 3) 3 / 2.   Thus, 

the area of the single zeroth generation triangle is 3 / 4.   Now, each time we pass to a new 
generation, each triangle splits into three (equilateral) triangles of half the length of the triangles of the 
current generation.  Thus, by induction, the nth generation will have 3n  equilateral triangles of 
sidelength 1/ 2n and hence each of these has area 1(1/ 2) 1/ 2 [ 3 / 2] / 2 3 / 4 .n n n  

(b) From part (a), the nth generation of the Sierpinski carpet consists of 3n equilateral triangles each
having area 13 / 4 .n   Hence the total area of this nth  generation is 3(3 / 4) / 4n .  Since this
expression goes to zero as ,n  and since the Sierpinski carpet is contained in each of the
generation sets, it follows that the area of the Sierpinski carpet must be zero.

EFR 7.9:  (a) The 2 2 0
0
s

s  (s > 0), and reflections with respect

to the x-axis: 1 0
0 1   or y-axis: 1 0

0 1  are both diagonal matrices and thus commute with any

other 2 2 matrices; i.e., if D is any diagonal matrix and A is any other 2 2  matrix, then AD = DA.  In 
particular, these matrices commute with each other and with the matrix representing a rotation through 

the angle : cos sin
sin cos .  By composing rotations and reflections, we can obtain transformations

that will reflect about any line passing through (0,0).  Once we throw in translations, we can reflect 
about any line in the plane and (as we have already seen) rotate with any angle about any point in the 
plane.  By the definition of similitudes, we now see that compositions of these general transformations 
can produce the most general similitudes.   Translating into homogeneous coordinates (using the proof 
of Theorem 7.2) we see that the matrix for such a composition can be expressed as  

matrices representing dilations
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0
0

cos sin
sin cos
0 0 1

s s x
s s y where s now is allowed to be any nonzero number.  If the sign in the second 

row is negative, we have a reflection:  If s > 0, it is a y-axis reflection;  if s < 0, it is an x-axis reflection.   
(b)  Let 1T and 2T be two similar triangles in the plane.   Apply a dilation, if necessary, to 1T  so that it 

has the same sidelengths as 2T .  Next, apply a shift transformation to 1T  so that a vertex gets shifted to 

a corresponding vertex of 2T , and then apply a rotation to 1T about this vertex so that a side of 1T  

transforms into a corresponding side of  2T .   

At this point, either 1T  and 2T  are now the same triangle, 
or they are reflections of one another across the common 
side.  A final reflection about this line, if necessary, will 
thus complete the transformation of 1T  into 2T by a 
similitude.  
(c)  It is clear that dilations, rotations, and shifts are 
essential.  For an example to see why reflection is needed, 
simply take 1T  to be any triangle with three different 

angles and 2T  to be its reflection about one of the edges (see figure).  It is clearly not possible to 
transform one of these two triangles into the other using any combination of dilations, rotations, and 
shifts.     
 
EFR 7.10:  (a)  There will be only one generation; here are the outputs that were asked for (in 
format short): 
A         0      1.0000    2.0000 

       0      1.7321         0 
1.0000    1.0000   1.0000 

A1  0           0.5000    1.0000 
0            0.8660         0 
1.0000   1.0000  1.0000 

 
A2  1.0000    1.5000    2.0000 

         0    0.8660         0 
1.0000    1.0000    1.0000 

A3  0.5000    1.0000    1.5000 
0.8660    1.7321    0.8660 
1.0000    1.0000    1.0000 

 
A1([1 2],2)   0.5000 
                       0.8660 

A3([1 2],2)   1.5000 
                        0.8660 
 

(b)  Since the program calls on itself and does so more than once (as long as niter is greater than 
zero), placing a hold off anywhere in the program will cause graphics created on previous runs to 
be lost, so such a feature could not be incorporated into the program.   
(c)  Since we want the program to call on itself iteratively with different vertex sets, we really need to 
allow vertex sets to be inputted.  Different vertex inputs are possible, but in order for the program to 
function effectively, they should be vertices of a triangle to which the similitudes in the program 
correspond. (e.g., any of the triangles in any generation of the Sierpinski gasket). 
 
 EFR 7.11:  (a) S2, S1, S3, S2, S3, S2 
(b) We list the sequence of float points in nonhomogeneous coordinates and in format short:  
[0.5000  0.8660],    [0.2500   0.4330],   [1.1250   0.2165],   [1.0625   0.9743],  [1.5313   0.4871],   
[1.2656  1.1096]. 
(c)  The program is designed to work for any triangle in the plane.   The reader can check that the three 
similitudes are constructed in a way that uses midpoints of the triangle and the resulting diagram will 
look like that of Figure 7.15.   
 
EFR 7.12:  (a) As with sgasket2, the program sgasket3 contructs future-generation triangles 
simply from the vertices and (computed) midpoints of the current-generation triangles.  Thus, it can 
deal effectively with any triangle and produce Sierpinski-type fractal generations.   
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(b) For illustration purposes, the following trials were run on MATLAB’s Version 5, so as to illustrate 
the flop count differences.  The code is easily modified to work on newer versions of MATLAB by 
simply deleting the “flops” commands. 
V1=[0 0]; V2=[1 sqrt(3)]; V3=[2 0];  %vertices of an equilateral 
triangle 
 test = [1 3 6 8 10];  
>> for i=1:5 
flops(0), tic, 
sgasket1(V1,V2,V3,test(i)), toc, 
flops 
end  

   (ngen =1) elapsed_time = 0.0600,   
ans =191       
       (ngen =3) elapsed_time = 0.2500,  
 ans =2243   
       (ngen =6) elapsed_time = 0.8510,  
 ans =62264   
       (ngen =8) elapsed_time = 7.2310,  
 ans =560900   
       (ngen =10) elapsed_time = 65.4640,  
ans =5048624                                     

>> for i=1:5 
flops(0), tic, 
sgasket3(V1,V2,V3,test(i)), toc, 
flops 
end  

   (ngen =1) elapsed_time = 0.1400,  
 ans = 45           
       (ngen =3) elapsed_time = 0.1310,  
 ans =369   
       (ngen =6) elapsed_time = 0.7210,  
ans =9846   
       (ngen =8) elapsed_time = 6.2990,   
ans =88578   
       (ngen =10) elapsed_time = 46.7260,  
ans =797166                                                    

We remind the reader that the times will vary, depending on the machine being used and other 
processes being run.  The above tests were run on a rather slow machine, so the resulting times are 
longer than typical.   
 
EFR 7.13:  The M-file is boxed below: 
function []=snow(n) 
S=[0 1 2 0;0 sqrt(3) 0 0]; 
index=1; 
while index <=n 
   len=length(S(1,:)); 
   for i=1:(len-1) 
delta=S(:,i+1)-S(:,i); 
perp=[0 -1;1 0]*delta; 
T(:,4*(i-1)+1)=S(:,i); 
T(:,4*(i-1)+2)=S(:,i)+(1/3)*delta; 
T(:,4*(i-1)+3)=S(:,i)+(1/2)*delta+(1/3)*perp; 
T(:,4*(i-1)+4)=S(:,i)+(2/3)*delta; 
T(:,4*(i-1)+5)=S(:,i+1); 
end 
index=index+1; 
S=T; 
end 
plot(S(1,:),S(2,:)), axis('equal') 
The outputs of  snow(1),  snow(2),  and  snow(6) are illustrated in Figures 7.17  and 7.18.   
 
EFR 7.14:  For any pair of nonparallel lines represented by a two-dimensional linear system:  

,a b x e
c d y f  the coefficient matrix will have nonzero determinant .ad bc   The lines are 

also represented by the equivalent system / / / ,a b x e
c d y f  where now the coefficient matrix 

has determinant ( / ) ( / ) 1.a d b c  This change simply amounts to dividing the first equation by 
.  

 
EFR 7.15:  (a) As in the solution of Example 7.7, the interpolation equations p( 2) = 4, p(1) = 3, 
p(2) = 5, and p(5) = 22 (where 3 2( ) )p x ax bx cx d
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