
7.2: Introduction to Computer Graphics and Animation 157

(d) det() det() det()A B A B
(e) If matrix B is obtained from A by replacing one row of A by a number k times the
corresponding row of ,A then det() det().B k A
(f) If one row of A is a constant multiple of another row of A then det() 0A .
(g) Two of these identities are not quite correct, in general, but they can be corrected using
another of these identities that is correct. Elaborate on this.
Suggestion: For part (f) automate the experiment as follows: After a random integer matrix A
is built, randomly select a first row number 1r and a different second row number 2r . Then
select randomly an integer k in the range
[9, 9]. Replace the row 2r with k times row 1r . This will be a good possible way to create
your test matrices. Use a similar selection process for part (e).

11. (a) Prove that matrix addition is commutative A B B A whenever A and B are two

matrices of the same size. (This is identity (5) in the text.)
(b) Prove that matrix addition is associative, () ()A B C A B C whenever , ,A B and
C are matrices of the same size. (This is the first part of identity (6) in the text.)

12. (a) Prove that the distributive laws for matrices: ()A B C AB AC and

()A B C AC BC , whenever the matrices are of appropriate sizes so that a particular
identity makes sense. (These are identities (7) in the text.)
(b) Prove that for any real number , we have that ()A B A B , whenever , ,A B
and C are matrices of the same size and that () () ()AB A B A B whenever A and B
are matrices with AB defined. (These are identities (8) in the text.)

13. Prove that matrix multiplication is associative, () ()AB C A BC whenever , , and A B C are

matrices so that both sides are defined. (This is the second part of identity (6) in the text.)

14. (Discovering Facts about Matrices) As we have seen, many matrix rules closely resemble

corresponding rules of arithmetic. But one must be careful since there are some exceptions.
One such notable exception we have encountered is that, unlike regular multiplication, matrix
multiplication is not commutative; that is, in general we cannot say that .AB BA For each of
the statements below about matrices, either give a counterexample, if it is false, or give a proof
if it is true. In each identity, assume that the matrices involved can be any matrices for which
the expressions are all defined. Also, we use 0 to denote the zero matrix (i.e., all entries are
zeros).
(a) 0 0.A
(b) If 0,AB then either 0A or 0.B

(c) If 2 0,A then 0.A
(d) ()AB B A (recall A denotes the transpose of A).

(e) 2 2 2() .AB A B

(f) If A and B are invertible square matrices, then so is AB and 1 1 1() .AB B A
Suggestion: If you are uncertain of any of these, run some experiments first (as shown in some
of the preceding exercises). If your experiments produce a counterexample, you have disproved
the assertion. In such a case you merely record the counterexample and move on to the next
one.

7.2: INTRODUCTION TO COMPUTER GRAPHICS AND ANIMATION

Computer graphics is the generation and transformation of pictures on the
computer. This is a hot topic that has important applications in science and

158 Chapter 7: Matrices and Linear Systems

business as well as in Hollywood (computer special effects and animated films).
In this section we will show how matrices can be used to perform certain types of
geometric operations on “objects.” The objects can be either two- or three-
dimensional but most of our illustrations will be in the two-dimensional plane.
For two-dimensional objects, the rough idea is as follows. We can represent a
basic object in the plane as a MATLAB graphic by using the command
plot(x,y), where x and y are vectors of the same length. We write x and y
as row vectors, stack x on top of ,y and we get a 2 n matrix A where n is the
common length of x and .y We can do certain mathematical operations to this
matrix to change it into a new matrix 1,A whose rows are the corresponding vertex
vectors 1 and 1.x y If we look at plot(x1,y1), we get a transformed version of
the original geometrical object. Many interesting geometric transformations can
be realized by simple matrix multiplications, but to make this all work nicely we
will need to introduce a new artificial third row of the matrix ,A that will simply
consist of 1’s. If we work instead with these so-called homogeneous coordinates,
then all of the common operations of scaling (vertically or horizontally), shifting,
rotating, and reflecting can be realized by matrix multiplications of these
homogeneous coordinates. We can mix and repeat such transformations to get
more complicated geometric transformations; and by putting a series of such plots
together we can even make movies. Another interesting application is the
construction of fractal sets. Fractal sets (or fractals) are beautiful geometric
objects that enjoy a certain “self-similarity property,” meaning that no matter how
closely one magnifies and examines the object, the fine details will always look
the same.

 Polygons, which we recall are planar regions bounded by a finite set of line
segments, are represented by their vertices. If we store the -coordinatesx of these
vertices and the -coordinatesy of these vertices as separate vectors (say the first
two rows of a matrix) preserving the order of adjacency, then MATLAB’s plot
command can easily plot the polygon.

EXAMPLE 7.3: We consider the following
“CAT” polygon shown in Figure 7.2. Store the
x-coordinates of the vertices of the CAT as the
first row vector of a matrix ,A and the
corresponding y-coordinates as the second row
of the same matrix in such a way that MATLAB
will be able to reproduce the cat by plotting the
second row vector of A versus the first.
Afterwards, obtain the plot from MATLAB.

SOLUTION: We can store these nine vertices
in a 2 10 matrix A (the first vertex appears
twice so the polygon will be closed when we
plot it). We may start at any vertex we like, but

FIGURE 7.2: CAT graphic for
Exampe 7.3.

7.2: Introduction to Computer Graphics and Animation 159

we must go around the cat in order (either clockwise or counterclockwise). Here
is one such matrix that begins at the vertex (0,0) and moves clockwise around the
cat.

>> A=[0 0 .5 1 2 2.5 3 3 1.5 0; ...
 0 3 4 3 3 4 3 0 -1 0];

To reproduce the cat, we plot the second row of A (the y’s) versus the first row
(the x ’s):

>> plot(A(1,:), A(2,:))

 In order to get the cat to fit nicely in the viewing area (recall, MATLAB always
sets the view area to just accommodate all the points being plotted), we reset the
viewing range to 2 5, 3 6,x y and then use the equal setting on the
axes so the cat will appear undistorted.

>> axis([-2 5 -3 6])
>> axis('equal')

The reader should check how each of the last two commands changes the cat
graphic; we reproduce only the final plot in Figure 7.3(a). Figure 7.3 actually
contains two cats, the original one (white) as well as a gray cat. The gray cat was
obtained in the same fashion as the orginal cat, except that the plot command
was replaced by the fill command, which works specifically with polygons and
whose syntax is as follows:

fill(x,y,color)

Here x and y are vectors of the -x and -coordinatesy of a polygon
(preserving adjacency order); color can be either one of the
predefined plot colors (as in Table 1.1) in single quotes, (e.g., k
would be a black fill) or an RGB-vector []r g b (with , , and r g b
each being numbers in [0,1]) to produce any color; for example, [.5
.5 .5] gives medium gray.

The elements , , and r g b in a color vector determine the amounts of red, green,
and blue to use to create a color; any color can be created in this way. For
example, []r g b [1 0 0] would be a pure-red fill; magenta is obtained with the
rgb vector [1 0 1], and different tones of gray can be achieved by using equal
amounts of red, green, and blue between [0 0 0] (black) and [1 1 1] (white).

For the gray cat in Figure 7.3(b), we used the command fill(A(1,:),
A(2,:), [.5 .5 .5]). To get a black cat we could either set the rgb vector
to [0 0 0] or replace it with k, which represents the preprogrammed color character
for black (see Table 1.1).

160 Chapter 7: Matrices and Linear Systems

FIGURE 7.3: Two MATLAB versions of the cat polygon: (a) (left) the first white cat was
obtained using the plot command and (b) (right) the second with the fill command.

EXERCISE FOR THE READER 7.3: After experimenting a bit with rgb color
vectors, get MATLAB to produce an orange cat, a brown cat, and a purple cat.
Also, try and find the rgb color vector that best matches the MATLAB built-in
color cyan (from Table 1.1, the symbol for cyan is c).

 A linear transformation L on the plane 2R
corresponds to a 2 2 matrix M (Figure 7.4). It
transforms any point (,)x y (represented by the

column vector x
y) to the point xM y obtained

by multiplying it on the left by the matrix M . The
reason for the terminology is that a linear
transformation preserves the two important linear
operations for vectors in the plane: addition and
scalar multiplication. That is, letting

1 2
1 2

1 2
,x xP Py y be two points in the plane

(represented by column vectors), and writing () ,L P MP the linear
transformation axioms can be expressed as follows:

 Both of these are to be valid for any choice of vectors (1, 2)iP i and scalar .
Because ()L P is just MP (the matrix M multiplied by the matrix P), these two
identities are consequences of the general properties (7) and (8) for matrices. By
the same token, if M is any n n matrix, then the transformation L(P) = MP

FIGURE 7.4: A linear
tranformation L in the plane.

1 2 1 2() () (),L P P L P L P (9)

1 1() ().L P L P (10)

7.2: Introduction to Computer Graphics and Animation 161

defines a linear transformation (satisfying (9) and (10)) for the space nR of n-
length vectors. Of course, most of our geomtric applications will deal with the
cases 2n (the plane) or 3n (3-dimensional (, ,)x y z space).

 Such tranformations and their generalizations are a basis for what is used in
contemporary interactive graphics programs and in the construction of computer
videos. If, as in the above example of the CAT, the vertices of a polygon are
stored as columns of a matrix ,A then, because of the way matrix multiplication
works, we can transform each of the vertices at once by multiplying the matrix M
of a linear transformation by .A The result will be a new matrix containing the
new vertices of the transformed graphic, which can be easily plotted.

 We now move on to give some important examples of transformations on the
plane 2.R

(1) Scalings: For 0, 0a b the linear
transformation

' 0
' 0

x a x ax
y b y by

will scale the horizontal direction with
respect to 0x by a factor of a and the
vertical direction with respect to 0y by
a factor of .b If either factor is < 1, there
is contraction (shrinkage) toward 0 in the
corresponding direction, while factors > 1
give rise to an expansion (stretching) away
from 0 in the corresponding direction.
As an example, we use 0.3a and 1b
to rescale our original CAT (Figure 7.5).
We assume we have left in the graphics window the first (white) cat of Figure
7.3(a).

>>M=[.3 0; 0 1]; %store scaling matrix
>>A1=M*A; %create the vertex matrix of the transformed cat;
>>hold on %leave the original cat in the window so we can compare
>>plot(A1(1,:), A1(2,:), 'r') %new cat will be in red

Caution: Changes in the axis ranges can also produce scale changes in MATLAB
graphics.

(2) Rotations: For a rotation angle , the linear tranformation that rotates a point
(,)x y an angle (counterclockwise) around the origin (0,0) is given by the
following linear tranformation:

' cos sin
' sin cos

x x
y y .

FIGURE 7.5: The scaling of the
original cat using factors a = 0.3 for
horizontal scaling and b = 1 (no
change) for vertical scaling has
produced the narrow-faced cat.

162 Chapter 7: Matrices and Linear Systems

(See Exercise 12 for a justification of this.) As an example, we rotate the original
cat around the origin using angle / 4 (Figure 7.6). Once again, we assume
the graphics window initially contains the original cat of Figure 7.3 before we start
to enter the following MATLAB commands:

>> M=[cos(-pi/4) -sin(-pi/4); sin(-pi/4) cos(-pi/4)];
>> A1=M*A;, hold on,plot(A1(1,:), A1(2,:), 'r')

(3) Reflections: The linear tranformation that reflects points over the -axisx is
given by

' 1 0
' 0 1

x x x
y y y .

Similary, to reflect points across the -axis,y the linear transformation will use the

matrix 1 0
0 1M . As an example, we reflect our original CAT over the

-axisy (Figure 7.7). We assume we have left in the graphics window the first cat
of Figure 7.3.

>> M=[-1 0; 0 1];
>> A1=M*A; hold on, plot(A1(1,:), A1(2,:), 'r')

(4) Shifts: Shifts are very simple and important transformations that are not linear
transformations. For a fixed (shift) vector 0 0 0(,) (0,0)V x y that we identify,

when convenient, with the column vector 0

0

x
y , the shift transformation

0VT

associated with the shift vector 0V is defined as follows:

0 0 0 0(,) (,) (,) (,).Vx y T x y x y V x x y y

FIGURE 7.6: The rotation (red) of the
original CAT (blue) using angle

/ 4 . The point of rotation is the
origin (0,0).

FIGURE 7.7: The reflection (left) of the
original CAT across the y-axis.

7.2: Introduction to Computer Graphics and Animation 163

 What the shift transformation does is
simply move all -coordinatesx by 0x units
and move all -coordinatesy by 0y units.
As an example we show the outcome of
applying the shift transformation (1,1)T to
our familiar CAT graphic. Rather than a
matrix multiplication with the 2 10 CAT
vertex matrix, we will need to add the
corresponding 2 10 matrix, each of
whose 10 columns is the shift column

vector 1
1 that we are using (Figure 7.8).

Once again, we assume the graphics
window initially contains the original
(white) CAT of Figure 7.3 before we start
to enter the following MATLAB commands (and that the CAT vertex matrix A is
still in the workspace).

>>size(A) %check size of A ans = 2 10
>> V=ones(2,10); A1=A+V; hold on, plot(A1(1,:),A1(2,:), 'r')

EXERCISE FOR THE READER 7.4: Explain why the shift transformation is
never a linear transformation.

 It is unfortunate that the shift transformation cannot be realized as a linear
transformation, so that we cannot realize it as using a 2 2 matrix multiplication
of our vertex matrix. If we could do this, then all of the important transformations
mentioned thus far could be done in the same way and it would make
combinations (and in particular making movies) an easier task. Forturnately there
is a way around this using so-called homogeneous coordinates. We first point out
a more general type of transformation than a linear transformation that includes all
linear transformations as well as the shifts. We define it only on the two-
dimensional space 2 ,R but the definition carries over in the obvious way to the
three-dimensional space 3R and higher-dimensional spaces as well. An affine
transformation on 2R equals a linear tranformation and/or a shift (applied
together). Thus, an affine transformation can be written in the form:

0
0

0
.xx x a b xM Vy y c d y y

(11)

The homogeneous coordinates of a point/vector x
y in 2R is the point/vector

1

x
y in 3.R Note that the third coordinate of the identified three-dimensional

point is always 1 in homogeneous coordinates. Geometrically, if we identify a

FIGURE 7.8: The shifted CAT (upper
right) came from the original CAT
using a shift vector (1,1). So the cat
was shifted one unit to the right and
one unit up.

164 Chapter 7: Matrices and Linear Systems

point (,)x y of 2R with the point (, ,0)x y in 3R (i.e., we identify 2R with the
plane 0z in 3R), then homogeneous coordinates simply lift all of these points
up one unit to the plane 1z . It may seem at first glance that homogeneous
coordinates are making things more complicated, but the advantage in computer
graphics is given by the following result.

THEOREM 7.2: (Homogeneous Coordinates) Any affine transformation on 2R
is a linear transformation if we use homogeneous coordinates. In other words, any
affine transformation T on 2R can be expressed using homogeneous coordinates
in the form:

1 1 1

x x x
y T y H y

 (12)

(matrix multiplication), where H is some 3 3 matrix.

Proof: The proof of the theorem is both simple and practical; it will show how to
form the matrix H in (12) from the parameters in (11) that determine the affine
transformation.

Case 1: T is a linear transformation on 2R with matrix a bM c d , i.e.,

x x a b xT My y c d y (no shift). In this case, the transformation can be

expressed in homogeneous coordinates as:

0
0

1 1 1 10 0 1

x x a b x x
y T y c d y H y .

 (13)

To check this identity, we simply perform the matrix multiplication:

0 0
0 0

1 1 0 0 10 0 1

x a b x ax by x xax byy c d y cx dy Mcx dyy y ,

as desired.

Case 2: T is a shift transformation on 2R with shift vector 0
0

0

xV y , that is,

0

0

xx xT y y y (so the matrix M in (12) is the identity matrix). In this

case, the transformation can be expressed in homogeneous coordinates as:

7.2: Introduction to Computer Graphics and Animation 165

0

0

1 0
0 1

1 1 1 10 0 1

xx x x x
y T y y y H y .

(14)

We leave it to the reader to check, as was done in Case 1, that this homogeneous
coordinate linear transformation does indeed represent the shift.

Case 3: The general case (linear transformation plus shift);

 0

0

xx x x a b xTy y y c d y y ,

can now be realized by putting together the matrices in the preceding two special
cases:

0

0
1 1 1 10 0 1

a b xx x x x
y T y c d y y H y .

(15)

We leave it to the reader check this (using the distributive law (7)).

 The basic transformations that we have so far mentioned can be combined to
greatly expand the mutations that can be performed on graphics. Furthermore, by
using homogeneous coordinates, the matrix of such a combination of basic
transformations can be obtained by simply multiplying the matrices by the
individual basic transformations that are used, in the correct order, of course. The
next example illustrates this idea.

EXAMPLE 7.4: Working in homogeneous coordinates, find the transformation
that will rotate the CAT about the tip of its chin by an angle of 90 . Express the
transformation using the 3 3 matrix M for homogeneous coordinate
multiplication, and then get MATLAB to create a plot of the transformed CAT
along with the original.

SOLUTION: Since the rotations we have previously introduced will always rotate
around the origin (0,0), the way to realize this transformation will be by combining
the following three transformations (in order):
(i) First shift coordinates so that the chin gets moved to (0,0). Since the chin has
coordinates (1.5, 1), the shift vector should be the opposite so we will use the
shift transformation

(1.5,1) 1

1 0 1.5
~ 0 1 1

0 0 1
T H

(the tilde notation is meant to indicate that the shift transformation is represented
in homogeneous coordinates by the given 3 3 matrix 1H , as specified by (14)).

166 Chapter 7: Matrices and Linear Systems

(ii) Next rotate (about (0,0)) by 90 . This rotation transformation R has
matrix

0 1cos(90) sin(90)
sin(90) cos(90) 1 0 ,

and so, by (13), in homogeneous coordinates is represented by

2

0 1 0
~ 1 0 0

0 0 1
R H .

(iii) Finally we undo the shift that we started with in (i), using

(1.5, 1) 3

1 0 1.5
~ 0 1 1

0 0 1
T H .

If we multiply each of these matrices (in order) on the left of the original
homogeneous coordinates, we obtain the transformed homogeneous coordinates:

3 2 1
1 1 1

x x x
y H H H y M y ,

that is, the matrix M of the whole transformation is given by the product
3 2 1H H H . We now turn things over to MATLAB to compute the matrix M and

to plot the before and after plots of the CAT.

>> H1=[1 0 -1.5; 0 1 1; 0 0 1]; H2=[0 1 0; -1 0 0; 0 0 1];
>> H3=[1 0 1.5;0 1 -1; 0 0 1];
>> format rat %will give a nicer display of the matrix M
>> M=H3*H2*H1

M = 0 1 5/2
 -1 0 1/2
 0 0 1

We will multiply this matrix M by the
matrix AH of homogeneous
coordinates corresponding to the matrix

.A To form ,AH we simply need to
tack on a row of ones to the bottom of
the matrix .A (See Figure 7.9.)

>> AH=A; %start with A
>> size(A) %check the size of A

ans = 2 10
>> AH(3,:)=ones(1,10); %form the
>> %appropriately sized third row
>> %for AH
>> size(AH) ans = 3 10
>> hold on, AH1=M*AH;
>> plot(AH1(1,:), AH1(2,:), 'r')

FIGURE 7.9: The red CAT was obtained
from the blue cat by rotating 90 about
the chin. The plot was obtained using
homogeneous coordinates in Example 7.3.

7.2: Introduction to Computer Graphics and Animation 167

EXERCISE FOR THE READER 7.5: Working in homogeneous coordinates,
(a) find the transformation that will shift the CAT one unit to the right and then
horizontally expand it by a factor of 2 (about 0x) to make a “fat CAT”. Express
the transformation using the 3 3 matrix M for homogeneous coordinate
multiplication, and then use MATLAB to create a plot of the transformed fat cat
along with the original.
(b) Next, find four transformations each shifting the cat by one of the following
shift vectors (1, 1) (so that all four shift vectors are used) after having rotated
the CAT about the central point (1.5, 1.5) by each of the following angles: 30 for
the upper-left CAT, 30 for the upper-right CAT, 45 for the lower-left cat,
and 45 for the lower-right cat. Then fill in the four cats with four different
(realistic cat) colors, and include the graphic.

 We now show how we can put graphics transformations together to create a
movie in MATLAB. This can be done in the following two basic steps:

STEPS FOR CREATING A MOVIE IN MATLAB:
Step 1: Construct a sequence of MATLAB graphics that will make up the frames
of the movie. After the thj frame is constructed, use the command M(:,j)=
getframe; to store the frame as the thj column of some (movie) matrix M .
Step 2: To play the movie, use the command movie(M, rep, fps), where M
is the movie matrix constructed in step 1, rep is a positive integer giving the
number of times the movie is to be (repeatedly) played, and fps denotes a
positive integer giving the speed, in “frames per second,” at which the movie is to
be played.

 Our next example gives a very simple
example of a movie. The movie star
will of course be the CAT, but this time
we will give it eyes (Figure 7.10). For
this first example, we do not use matrix
transformations, but instead we directly
edit (via a loop) the code that generates
the graphic. Of course, a textbook
cannot play the movie, so the reader is
encouraged to rework the example in
front of the computer and thus replay
the movie.

EXAMPLE 7.5: Modify the CAT
graphic to have a black outline, to have
two circular eyes (filled in with yellow),

with two smaller black-filled pupils at the center of the eyes. Then make a movie
of the cat closing and then reopening its eyes.

FIGURE 7.10: The original CAT of
Example 7.3 with eyes added, the star of
our first cat movie.

168 Chapter 7: Matrices and Linear Systems

SOLUTION: The strategy will be as follows: To create the new CAT with the
specified eyes, we use the “hold on” command after having created the basic CAT.
Then we fill in yellow two circles of radius 0.4 centered at (1, 2) (left eye) and
at (2, 2) (right eye); after this we fill in black two smaller circles with radii 0.15 at
the same centers (for the pupils). The circles will actually be polygons obtained
by parametric equations. To gradually close the eyes, we use a for loop to create
CATs with the same outline but whose eyes are shrinking only in the vertical
direction.

 This could be done with homogeneous coordinate transforms (that would shrink
in the y direction each eye but maintain the centers—thus it would have to first
shift the eyes down to 0,y shrink and then shift back), or alternatively we could
just directly modify the y parametric equations of each eye to put a shrinking
scaling factor in front of the sine function to turn the eyes both directly into a
shrinking (and later expanding) sequence of ellipses. We proceed with the second
approach. Let us first show how to create the CAT with the indicated eyes. We
begin with the original CAT (this time with black line color rather than blue),
setting the axis options as previously, and then enter hold on. Assuming this
has been done, we can create the eyes as follows:

>> t=0:.02:2*pi; %creates time vector for parametric equations
>> x=1+.4*cos(t); y=2+.4*sin(t); %creates circle for left eye
>> fill(x,y,'y') %fills in left eye
>> fill(x+1,y, 'y') %fills in right eye
>> x=1+.15*cos(t); y=2+.15*sin(t); %creates circle for left pupil
>> fill(x,y,'k') %fills in left pupil
>> fill(x+1,y,'k') %fills in right pupil

 To make the frames for our movie (and to “get” them), we employ a for loop that
goes through the above construction of the “CAT with eyes”, except that a factor
will be placed in front of the sine term of the -coordinatesy of both eyes and
pupils. This factor will start at 1, shrink to 0, and then expand back to the value of
1 again. To create such a factor, we need a function with starting value 1 that
decreases to zero, then turns around and increases back to 1. One such function
that we can use is (1 cos) / 2x over the interval [0, 2]. Below we give one
possible implementation of this code:

>>t=0:.02:2*pi; counter=1;
>>A=[0 0 .5 1 2 2.5 3 3 1.5 0;... ...
 0 3 4 3 3 4 3 0 -1 0];
>>x=1+.4*cos(t); xp=1+.15*cos(t);
>>for s=0:.2:2*pi
 factor = (cos(s)+1)/2;
 plot(A(1,:), A(2,:), 'k')
 axis([-2 5 -3 6]), axis('equal')
 y=2+.4*factor*sin(t); yp=2+.15*factor*sin(t);
 hold on
 fill(x,y,'y'), fill(x+1,y, 'y'), fill(xp,yp,'k'), fill(xp+1,yp,'k')
 M(:, counter) = getframe;
 hold off, counter=counter+1;
end

7.2: Introduction to Computer Graphics and Animation 169

The movie is now ready for screening. To view it the reader might try one (or
both) of the following commands.

>> movie(M,4,5) %slow playing movie, four repeats
>> movie(M,20,75) %much faster play of movie, with 20 repeats

EXERCISE FOR THE READER
7.6: (a) Create a MATLAB function
M-file, called mkhom(A), that takes
a 2 m matrix of vertices for a
graphic (first row has x-coordinates
and second row has corresponding y-
coordinates) as input and outputs a
corresponding 3 m matrix of
homogeneous coordinates for the
vertices.
(b) Create a MATLAB function M-
file, called rot(Ah,x0,y0,
theta) that has inputs, Ah, a
matrix of homogeneous coordinates
of some graphic, two real numbers,
x0, y0 that are the coordinates of
the center of rotation, and theta , the angle (in radians) of rotation. The output
will be the homogeneous coordinate vertex matrix gotten from Ah by rotating the
graph an angle theta about the point (0, 0).x y

EXERCISE FOR THE READER 7.7: (a) Recreate the above movie working in
homogeneous coordinate transforms on the eyes.
(b) By the same method, create a similar movie that stars a more sophisticated cat,
replete with whiskers and a mouth, as shown in Figure 7.11. In this movie, the cat
starts off frowning and the pupils will shift first to the left, then to the right, then
back to center and finally up, down and back to center again, at which point the cat
will wiggle its whiskers up and down twice and change its frown into a smile.

 Fractals or fractal sets are complicated and interesting sets (in either the plane
or three-dimensional space) that have the self-similarity property that if one
magnifies a certain part of the fractal (any number of times) the details of the
structure will look exactly the same.

 The computer generation of fractals is also a hot research area and we will look at
some of the different methods that are extensively used. Fractals were gradually
discovered by mathematicians who were specialists in set theory or function
theory, including (among others) the very famous Georg F. L. P. Cantor
(1845 1918, German), Waclaw Sierpinski (1882 1969, Polish), Gaston Julia
(1893 1978, French) and Giuseppe Peano (1858 1932, Italian) during the late
nineteenth and early twentieth centuries. Initially, fractals came up as being
pathological objects without any type of unifying themes. Many properties of

FIGURE 7.11: The more sophisticated cat
star of the movie in Exercise for the Reader
7.7 (b).

170 Chapter 7: Matrices and Linear Systems

factals that have shown them to be so useful in an assortment of fields were
discovered and popularized by the Polish/French mathematician Benoit
Mandelbrot(Figure 7.12).3 The precise definition of a fractal set takes a lot of
preliminaries; we refer to the references, for example, that are cited in the footnote
on this page for details. Instead of this, we will jump into some examples. The
main point to keep in mind is that all of the examples we give (in the text as well
as in the exercises) are actually impossible to print out exactly because of the self-
similarity property; the details would require a printer with infinite resolution.
Despite this problem, we can use loops or recursion with MATLAB to get some
decent renditions of fractals that, as far as the naked eye can tell (your printer’s
resolution permitting), will be accurate illustrations.
Fractal sets are usually best described by an iterative
procedure that runs on forever.

EXAMPLE 7.6: (The Sierpinski Gasket) To
obtain this fractal set, we begin with an equilateral
triangle that we illustrate in gray in Figure 7.13(a);
we call this set the zeroth generation. By
considering the midpoints of each of the sides of
this triangle, we can form four (smaller) triangles
that are similar to the original. One is upside-down
and the other three have the same orientation as the
original. We delete this central upside down
subtriangle from the zeroth generation to form the
first generation (Figure 7.13(b)).

3 Mandelbrot was born in Poland in 1924 and his family moved to France when he was 12 years old.
He was introduced to mathematics by his uncle Szolem Mandelbrojt, who was a mathematics professor
at the Collège de France. From his early years, though, Mandelbrot showed a strong preference for
mathematics that could be applied to other areas rahter than the pure and rather abstruse type of
mathematics on which his uncle was working. Since World War II was taking place during his school
years, he often was not able to attend school and as a result much of his education was done at home
through self-study. He attributes to this informal education the development of his strong geometric
intuition. After earning his Ph.D. in France he worked for a short time at Cal Tech and the Institute for
Advanced Study (Princeton) for postdoctoral work. He then returned to France to work at the Centre
National de la Recherche Scientifique. He stayed at this post for only three years since he was finding
it difficult to fully explore his creativity in the formal and traditional mathematics societies that
dominated France in the mid-twentieth century (the “Bourbaki School”). He returned to the United
States, taking a job as a research fellow with the IBM research laboratories. He found the atmosphere
extremely stimulating at IBM and was able to study what he wanted. He discovered numerous
applications and properties of fractals; the expanse of applications is well demonstrated by some of the
other joint appointments he has held while working at IBM. These include Professor of the Practice of
Mathematics at Harvard University, Professor of Engineering at Yale, Professor of Economics at
Harvard, and Professor of Physiology at the Einstein College of Medicine. Many books have been
written on fractals and their applications. For a very geometric and accessible treatment (with lots of
beautiful pictures of fractals) we cite [Bar-93], along with [Lau-91]; see also [PSJY-92]. More analytic
(and mathematically advanced) treatments are nicely done in the books [Fal-85] and [Mat-95].

FIGURE 7.12: Benoit
Mandelbrot (b. 1924) Polish/
French mathematician.

7.2: Introduction to Computer Graphics and Animation 171

 (a) (b) (c)

FIGURE 7.13: Generation of the Sierpinski gasket of Example 7.6: (a) the zeroth
generation (equilateral triangle), (b) first generation, (c) second generation. The generations
continue on forever to form the actual set.

 Next, on each of the three (equilateral) triangles that make up this first
generation, we again perform the same procedure of deleting the upside-down
central subtriangle to obtain the generation-two set (Figure 7.13(c)). This process
is to continue on forever and this is how the Sierpinski gasket set is formed. The
sixth generation is shown in Figure 7.14.

FIGURE 7.14: Sixth generation of the Sierpinski gasket fractal of Example 7.6.

 Notice that higher generations become indistinguishable to the naked eye, and
that if we were to focus on one of the three triangles of the first generation, the
Sierpinski gasket looks the same in this triangle as does the complete gasket. The
same is true if we were to focus on any one of the nine triangles that make up the
second generation, and so on.

EXERCISE FOR THE READER 7.8: (a) Show that the nth generation of the
Sierpinski triangle is made up of 3n equilateral triangles. Find the area of each of
these nth-generation triangles, assuming that the initial sidelengths are one.
(b) Show that the area of the Sierpinski gasket is zero.
NOTE: It can be shown that the Sierpinski gasket has dimension log 4 / log3

1.2618... , where the dimension of a set is a rigorously defined measure of its

172 Chapter 7: Matrices and Linear Systems

true size. For example, any countable union of line segments or smooth arcs is of
dimension one and the inside of any polygon is two-dimensional. Fractals have
dimensions that are nonintegers. Thus a fractal in the plane will have dimension
somewhere (strictly) between 1 and 2 and a fractal in three-dimensional space will
have dimension somewhere strictly between 2 and 3. None of the standard sets in
two and three dimensions have this property. This noninteger dimensional
property is often used as a definition for fractals. The underlying theory is quite
advanced; see [Fal-85] or [Mat-95] for more details on these matters.

 In order to better understand the self-similarity property of fractals, we first recall
from high-school geometry that two triangles are similar if they have the same
angles, and consequently their corresponding sides have a fixed ratio. A
similarity transformation (or similitude for short) on 2R is an affine
transformation made up of one or more of the following special transformations:
scaling (with both -x and -factorsy equal), a reflection, a rotation, and/or a shift.
In homogeneous coordinates, it thus follows that a similitude can be expressed in
matrix form as follows:

0

0

cos sin
sin cos ,

1 1 1 10 0 1

s s xx x x x
y T y s s y y H y

 (16)

where s can be any nonzero real number and the signs in the second row of H
must be the same. A scaling with both -x and -factorsy being equal is
customarily called a dilation.

EXERCISE FOR THE READER 7.9: (a) Using Theorem 7.2 (and its proof),
justify the correctness of (16).
(b) Show that for any two similar triangles in the plane there is a similitude that
transforms one into the other.
(c) Show that if any particular feature (e.g., reflection) is removed from the
definition of a similitude, then two similar triangles in the plane can be found,
such that one cannot be transformed to the other by this weaker type of
transformation.

 The self-similarity of a fractal means, roughly, that for the whole fractal (or at
least a critical piece of it), a set of similitudes 1 2, , , KS S S can be found (the
number K of them will depend on the fractal) with the following property: All

jS ’s have the same scaling factor 1s so that F can be expressed as the union of
the transformed images ()i iF S F and these similar (and smaller) images are
essentially disjoint in that different ones can have only vertex points or boundary
edges in common. Many important methods for the computer generation of
fractals will hinge on the discovery of these similitudes 1 2, , , KS S S . Finding
them also has other uses in both the theory and application of fractals. These

7.2: Introduction to Computer Graphics and Animation 173

concepts will be important in Methods 1 and 2 in our solution of the following
example.

EXAMPLE 7.7: Write a MATLAB function M-file that will produce graphics for
the Sierpinski gasket fractal.

SOLUTION: We deliberately left the precise syntax of the M-file open since we
will actually give three different approaches to this problem and produce three
different M-files. The first method is a general one that will nicely take advantage
of the self-similarity of the Sierpinski gasket and will use homogeneous coordinate
transform methods. It was, in fact, used to produce high-quality graphic of Figure
7.14. Our second method will illustrate a different approach, called the Monte
Carlo method, that will involve an iteration of a random selection process to
obtain points on the fractal, and will plot each of the points that get chosen.
Because of the randomness of selection, enough iterations produce a reasonably
representative sample of points on the fractal and the resulting plot will give a
decent depiction of it. Monte Carlo is a city on the French Riviera known for its
casinos (it is the European version of Las Vegas). The method gets its name from
the random (chance) selection processes it uses. Our third method works similarly
to the first but the ideas used to create the M-file are motivated by the special
structure of the geometry, in this case of the triangles.

Method 1: The Sierpinski gasket has
three obvious similitudes, each of
which transforms it into one of the
three smaller “carbon copies” of it
that lie in the three triangles of the
first generation (see Figure 7.15).
These similitudes have very simple
form, involving only a dilation (with
factor 0.5) and shifts. The first
transformation 1S involves no shift.
Referring to the figure, it is clear that

2S must shift 1V to the midpoint of
the line segment 1 2VV that is given by
(as a vector) 1 2() / 2.V V . The shift
vector needed to do this, and hence

the shift vector for 2S is 2 1() / 2.V V (Proof: If we shift 1V by this vector we get

1 2 1 2 1() / 2 () / 2.)V V V V V Similarly the shift vector for 3S is 3 1() / 2.V V It
follows that the corresponding matrices for these three similitudes are as given
below:

3 12 1

1 2 2 1 3 3 1

.5 0 ((1) (1)) / 2.5 0 ((1) (1)) / 2.5 0 0
~ 0 .5 0 , ~ 0 .5 ((2) (2)) / 2 , ~ 0 .5 ((2) (2)) / 2 .

0 0 1 0 0 1 0 0 1

V VV V
S S V V S V V

FIGURE 7.15: The three natural similitudes

1 2 3, ,S S S for the Sierpinski gasket with
vertices 1 2 3, ,V V V shown on the zeroth and
first generations. Since the zeroth generation
is an equilateral triangle, so must be the three
triangles of the first generation.

174 Chapter 7: Matrices and Linear Systems

Program 7.1, sgasket1 (V1,V2,V3,ngen), has four input variables: V1,
V2, V3 should be the row vectors representing the vertices (0,0), (1, 3), (2,0) of
a particular equilateral triangle, and ngen is the generation number of the
Sierpinski gasket to be drawn. The program has no output variables, but will
produce a graphic of this generation ngen of the Sierpinski gasket. The idea
behind the algorithm is the following. The three triangles making up the
generation-one gasket can be obtained by applying each of the three special
similitudes 1 2 3, ,S S S to the single generation-zero Gasket. By the same token,
each of the nine triangles that comprise the generation-two gasket can be obtained
by applying one of the similitudes of 1 2 3, ,S S S to one of the generation-one
triangles. In general, the triangles that make up any generation gasket can be
obtained as the union of the triangles that result from applying each of the
similitudes 1 2 3, ,S S S to each of the previous generation triangles. It works with

the equilateral triangle having vertices (0,0), (1, 3), (2,0) . The program makes
excellent use of recursion.

PROGRAM 7.1: Function M-file for producing a graphic of any generation of the
Sierpinski gasket on the special equilateral triangle with vertices (0,0),(1, 3),(2,0)
(written with comments in a way to make it easily modified to work for other fractals).
function sgasket1(V1,V2,V3,ngen)
%input variables: V1,V2,V3 should be the vertices [0 0], [1,sqrt(3)],
%and [2,0] of a particular equilateral triangle in the plane taken as
%row vectors, ngen is the number of iterations to perform in
%Sierpinski gasket generation.
%The gasket will be drawn in medium gray color.

%first form matrices for similitudes
 S1=[.5 0 0;0 .5 0;0 0 1];
 S2=[.5 0 1; 0 .5 0;0 0 1];
 S3=[.5 0 .5; 0 .5 sqrt(3)/2;0 0 1];

if ngen == 0
 %Fill triangle
 fill([V1(1) V2(1) V3(1) V1(1)], [V1(2) V2(2) V3(2) V1(2)], [.5 .5
.5])
 hold on
else
%recursively invoke the same function on three outer subtriangles
%form homogeneous coordinate matrices for three vertices of triangle
 A=[V1; V2; V3]'; A(3,:)=[1 1 1];
 %next apply the similitudes to this matrix of coordinates
 A1=S1*A; A2=S2*A; A3=S3*A;
%finally, reapply sgasket1 to the corresponding three triangles with
%ngen bumped down by 1. Note, vertex vectors have to be made into
%row vectors using '(transpose).
 sgasket1(A1([1 2],1)', A1([1 2],2)', A1([1 2],3)', ngen-1)
 sgasket1(A2([1 2],1)', A2([1 2],2)', A2([1 2],3)', ngen-1)
 sgasket1(A3([1 2],1)', A3([1 2],2)', A3([1 2],3)', ngen-1)
end

7.2: Introduction to Computer Graphics and Animation 175

To use this program to produce, for example, the generation-one graphic of Figure
7.13(b), one need only enter:

>> sgasket1([0 0], [1 sqrt(3)], [2 0], 1)

If we wanted to produce a graphic of the more interesting generation-six
Sierpinski gasket of Figure 7.15, we would have only to change the last input
argument from 1 to 6. Note, however, that this function left the graphics window
with a hold on. So before doing anything else with the graphics window after
having used it, we would need to first enter hold off. Alternatively, we could
also use the following command:

clf Clears the graphics window.

In addition to recursion, the above program makes good use of MATLAB’s
elaborate matrix manipulation features. It is important that the reader fully
understands how each part of the program works. To this end the following
exercise should be useful.

EXERCISE FOR THE READER 7.10: (a) Suppose the above program is invoked
with these input variables: 1 [0 0],V 2V [1 3], 3 [2 0],V ngen = 1. On the
first run/iteration, what are the numerical values of each of the following variables:
A, A1, A2, A3, A1([1 2],2), A3([1 2],3)?
(b) Is it possible to modify the above program so that after the graphic is drawn,
the screen will be left with hold off? If yes, show how to do it; if not, explain.
(c) In the above program, the first three input variables 1, 2, 3V V V seem a bit
redundant since we are forced to input them as the vertices of a certain triangle
(which gave rise to the special similitudes 1, 2, and 3).S S S Is it possible to
rewrite the program so that it has only one input variable ngen? If yes, show how
to do it; if not, explain.

Method 2: The Monte Carlo method also will use the special similitudes, but its
philosophy is very different from that of the first method. Instead of working on a
particular generation of the Sierpinki gasket fractal, it goes all out and tries to
produce a decent graphic of the actual fractal. This gets done by plotting a
representative set of points on the fractal, a random sample of such. Since so
much gets deleted from the original triangle, a good question is What points
exactly are left in the Sierpinski gasket? Certainly the vertices of any triangle of
any generation will always remain. Such points will be the ones from which the
Monte Carlo method samples. Actually there are a lot more points in the fractal
than these vertices, although such points are difficult to write down. See one of
the books on fractals mentioned earlier for more details.

 Here is an outline of how the program will work. We start off with a point we
call “Float” that is a vertex of the original (generation-zero) triangle, say V1. We
then randomly choose one of the similitudes from 1 2 3, ,S S S , and apply this to

176 Chapter 7: Matrices and Linear Systems

“Float” to get a new point “New,” that will be the corresponding vertex of the
generation-one triangle associated with the similitude that was used (lower left for

1S , upper middle for 3S , and lower right for 2S). We plot “New,” redefine
“Float” = “New,” and repeat this process, again randomly selecting one of the
similitudes to apply to “Float” to get a new point “New” of the fractal that will be
plotted. At the Nth iteration, “New” will be a vertex of one of the Nth-generation
triangles (recall there are 3N such triangles) that will also lie in one of the three
generation-one triangles, depending on which of 1 2 3, ,S S S had been randomly
chosen. Because of the randomness of choices at each iteration, the points that are
plotted usually give a decent rendition of the fractal, as long as a large enough
random sample is used (i.e., a large number of iterations).

PROGRAM 7.2: Function M-file for producing a Monte Carlo approximation graphic of
Sierpinski gasket, starting with the vertices V1, V2, and V3 of any equilateral triangle
(written with comments in a way that will make it easily modified to work for other
fractals).

function [] = sgasket2(V1,V2,V3,niter)
%input variables: V1,V2,V3 are vertices of an equilateral triangle in
%the plane taken as row vectors, niter is the number of iterations
%used to obtain points in the fractal. The output will be a plot of
%all of the points. If niter is not specified, the default value
%of 5000 is used.
%if only 3 input arguments are given (nargin==3), set niter to
%default
if nargin == 3, niter = 5000; end

%Similitude matrices for Sierpinski gasket.
S1=[.5 0 0;0 .5 0;0 0 1];
S2=[.5 0 (V2(1)-V1(1))/2; 0 .5 (V2(2)-V1(2))/2;0 0 1];
S3=[.5 0 (V3(1)-V1(1))/2; 0 .5 (V3(2)-V1(2))/2;0 0 1];

%Probability vector for Sierpinski gasket has equal probabilities
%(1/3)for choosing one of the three similitudes.
P = [1/3 2/3];

%prepare graphics window for repeated plots of points
clf, axis('equal'); hold on;

%introduce "floating point" (can be any vertex) in homogeneous
%coordinates
Float=[V1(1);V1(2);1];
i = 1; %initialize iteration counter

%Begin iteration for creating new floating points and plotting each
%one that arises.
while i <= niter
 choice = rand;
 if choice < P(1);
 New = S1 * Float;
 plot (New(1), New(2));
 elseif choice < P(2);
 New = S2 * Float;
 plot (New(1), New(2));
 else New = S3 * Float;

7.2: Introduction to Computer Graphics and Animation 177

 plot (New(1), New(2));
 end;
 Float=New; i = i + 1;
end
hold off

Unlike the last program, this one allows us to input the vertices of any equilateral
triangle for the generation-zero triangle. The following two commands will
invoke the program first with the default 5000 iterations and then with 20,000 (the
latter computation took several seconds).

>> sgasket2([0 0], [1 sqrt(3)], [2 0])
>> sgasket2([0 0], [1 sqrt(3)], [2 0], 20000)

The results are shown in Figure 7.16. The following exercise should help the
reader better undertstand how the above algorithm works.

EXERCISE FOR THE READER 7.11: Suppose that we have generated the
following random numbers (between zero and one): .5672, .3215, .9543, .4434,
.8289, .5661 (written to 4 decimals).
(a) What would be the corresponding sequence of similitudes chosen in the above
program from these random numbers?
(b) If we used the vertices [0 0], [1 sqrt(3)], [2 0] in the above program, find the
sequence of different “Float” points of the fractal that would arise if the above
sequence of random numbers were to come up.
(c) What happens if the vertices entered in the program sgasket2 are those of a
nonequilateral triangle? Will the output ever look anything like a Sierpinski
gasket? Explain.

FIGURE 7.16: Monte Carlo renditions of the Sierpinski gasket via the program
sgasket2. The left one (a) used 5000 iterations while the right one (b) used 20,000 and
took noticeably more time.

Method 3: The last program we write here will actually be the shortest and most
versatile of the three. Its drawback is that, unlike the other two, which made use
of the specific similitudes associated with the fractal, this program uses the special
geometry of the triangle and thus will be more difficult to modify to work for other

178 Chapter 7: Matrices and Linear Systems

fractals. The type of geometric/mathematical ideas present in this program,
however, are useful in writing other graphics programs. The program
sgasket3(V1,V2,V3,ngen) takes as input three vertices V1, V2, V3 of a
triangle (written as row vectors), and a positive integer ngen. It will produce a
graphic of the ngen-generation Sierpinski gasket, as did the first program. It is
again based on the fact that each triangle from a positive generation gasket comes
in a very natural way from the triangle of the previous generation in which it lies.
Instead of using similitudes and homogeneous coordinates, the program simply
uses explicit formulas for the vertices of the (N + 1)st-generation triangles that lie
within a certain Nth-generation triangle. Indeed, for any triangle from any
generation of the Sierpinski gasket with vertices 1 2 3, , ,V V V three subtriangles of
this one form the next generation (see Figure 7.15), each has one vertex from this
set, and the other two are the midpoints from this vertex to the other two. For
example (again referring to Figure 7.15) the lower-right triangle will have vertices

2V , 1 2() / 2V V = the midpoint of 2 1V V , and 2 3() / 2V V = the midpoint of 2 3V V .
This simple fact, plus recursion, is the idea behind the following program.

PROGRAM 7.3: Function M-file for producing a graphic of any generation of the
Sierpinski gasket for an equilateral triangle with vertices V1, V2, and V3.
function sgasket3(V1,V2,V3,ngen)
%input variables: V1,V2,V3 are vertices of a triangle in the plane,
%written as row vectors, ngen is the generation of Sierpinski gasket
%that will be drawn in medium gray color.
if ngen == 0
%Fill triangle
 fill([V1(1) V2(1) V3(1) V1(1)],...
 [V1(2) V2(2) V3(2) V1(2)], [.5 .5 .5])
 hold on
 else
%recursively invoke the same function on three outer subtriangles
 sgasket3(V1, (V1+V2)/2, (V1+V3)/2, ngen-1)
 sgasket3(V2, (V2+V1)/2, (V2+V3)/2, ngen-1)
 sgasket3(V3, (V3+V1)/2, (V3+V2)/2, ngen-1)
end

EXERCISE FOR THE READER 7.12: (a) What happens if the vertices entered in
the program sgasket3 are those of a nonequilateral triangle? Will the output
ever look anything like a Sierpinski gasket? Explain.
(b) The program sgasket3 is more elegant than sgasket1 and it is also more
versatile in that the latter program applies only to a special equilateral triangle.
Furthermore, it also runs quicker since each iteration involves less computing.
Justify this claim by obtaining some hard evidence by running both programs (on
the standard equilateral triangle of sgasket1) and comparing tic/toc and
flop counts (if available) for each program with the following values for ngen: 1,
3, 6, 8, 10.

 Since programs like the one in Method 3 of the above example are usually the
most difficult to generalize, we close this section with yet another exercise for the
reader that will ask for such a program to draw an interesting and beautiful fractal

7.2: Introduction to Computer Graphics and Animation 179

known as the von Koch4 snowflake, which is illustrated in Figure 7.17. The
iteration scheme for this fractal is shown in Figure 7.18.

EXERCISE FOR THE READER 7.13: Create a MATLAB function, call it
snow(n), that will input a positive integer n and will produce the nth generation
of the so-called von Koch snowflake fractal. Note that we start off (generation 0)
with an equilateral triangle with sidelength 2. To get from one generation to the
next, we do the following: For each line segment on the boundary, we put up (in
the middle of the segment) an equilateral triangle of 1/3 the sidelength. This
construction is illustrated in Figure 7.18, which contains the first few generations
of the von Koch snowflake. Run your program (and include the graphical
printout) for the values: 1, 2, and 6.n n n

FIGURE 7.17: The von Koch snowflake fractal. This illustration was produced by the
MATLAB program snow(n) of Exercise for the Reader 7.13, with an input value of 6
(generations).

Suggestions: Each generation can be obtained by plotting its set of vertices (using
the plot command). You will need to set up a for loop that will be able to produce
the next generation’s vertices from those of a given generation. It is helpful to
think in terms of vectors.

4 The von Koch snowflake was introduced by Swedish mathematician Niels F. H. von Koch
(1870 1924) in a 1906 paper Une méthode géométrique élémentaire pour l'étude de certaines
questions de la théorie des courbes planes. In it he showed that the parametric equations for the curve
(x(t), y(t)) give an example of functions that are everywhere continuous but nowhere differentiable.
Nowhere differentiable, everywhere continuous functions had been first discovered in 1860 by German
mathematician Karl Weierstrass (1815 1897), but the constructions known at this time all involved
very complicated formulas. Von Koch’s example thus gives a curve (of infinite arclength) that is
continuous everywhere (no breaks), but that does not have a tangent line at any of its points. The von
Koch snowflake has been used in many areas of analysis as a source of examples.

180 Chapter 7: Matrices and Linear Systems

Generation 0n snowflake: Generation 1n snowflake:

Generation 2n snowflake: Generation 3n snowflake:

FIGURE 7.18: Some initial generations of the von Koch snowflake. Generation zero is an
equilateral triangle (with sidelength 2). To get from any generation to the next, each line
segment on the boundary gets replaced by four line segments each having 1/3 of the length
of the original segment. The first and fourth segments are at the ends of the original
segment and the middle two segments form two sides of an equilateral triangle that
protrudes outward.

EXERCISES 7.2:

NOTE: In the problems of this section, the “CAT” refers to the graphic of Example 7.2 (Figure 7.3(a)),
the “CAT with eyes” refers to the enhanced version graphic of Example 7.5 (Figure 7.10), and the “full
CAT” refers to the further enhanced CAT of Exercise for the Reader 7.7(b) (Figure 7.11). When asked
to print a certain transformation of any particular graphic (like the CAT) along with the original, make
sure to print the original graphic in one plotting style/color along with the transformed graphic in a
different plotting style/color. Also, in printing any graphic, use the axis(equal) setting to prevent
any distortions and set the axis range to accommodate all of the graphics nicely inside the bounding
box

1. Working in homogeneous coordinates, what is the transformation matrix M that will scale the

CAT horizontally by a factor of 2 (to make a “fat CAT”) and then shift the cat vertically down a
distance 2 and horizontally 1 unit to the left? Create a before and after graphic of the CAT.

2. Working in homogeneous coordinates, what is the transformation matrix M that will double the

size of the horizontal and vertical dimensions of the CAT and then rotate the new CAT by an
angle of 45 about the tip of its left ear (the double-sized cat’s left ear, that is)? Include a
before-and-after graphic of the CAT.

3. Working in homogeneous coordinates, what is the transformation matrix M that will shift the
left eye and pupil of the “CAT with eyes” by 0.5 units and then expand them both by a factor of

7.2: Introduction to Computer Graphics and Animation 181

2 (away from the centers)? Apply this transformation just to the left eye. Next, perform the
analogous transformation to the CAT’s right eye and then plot these new eyes along with the
outline of the CAT, to get a cat with big eyes.

4. Working in homogeneous coordinates, what is the transformation matrix M that will shrink the

“CAT with eyes”’s left eye and left pupil by a factor of 0.5 in the horizontal direction (toward
the center of the eye) and then rotate them by an angle of 25 ? Apply this transformation just
to the left eye, reflect to get the right eye, and then plot these two along with the outline of the
CAT, to get a cat with thinner, slanted eyes.

5. (a) Create a MATLAB function M-file, called reflx(Ah, x0) that has inputs, Ah, a matrix

of homogeneous coordinates of some graphic, and a real number x0. The output will be the
homogeneous coordinate vertex matrix obtained from Ah by reflecting the graphic over the
line 0x x . Apply this to the CAT graphic using 0 2,x and give a before-and-after plot.
(b) Create a similar function M-file refly(Ah, y0) for vertical reflections (about the
horizontal line 0y y) and apply to the CAT using 0 4y to create a before and after plot.

6. (a) Create a MATLAB function M-file, called shift(Ah,x0,y0) that has as inputs Ah, a

matrix of homogeneous coordinates of some graphic, and a pair of real numbers x0,y0. The
output will be the homogeneous coordinate vertex matrix obtained from Ah by shifting the
graphic using the shift vector (x0,y0). Apply this to the CAT graphic using x0 = 2 and y0 =

1 and give a before-and-after plot.
(b) Create a MATLAB function M-file, called scale(Ah,a,b,x0,y0) that has inputs Ah,
matrix of homogeneous coordinates of some graphic, positive numbers: a and b that represent
the horizontal and vertical scaling factors, and a pair of real numbers x0, y0 that represent the
coordinates about which the scaling is to be done. The output will be the homogeneous
coordinate vertex matrix obtained from Ah by scaling the graphic as indicated. Apply this to
the CAT graphic using a = .25, b = 5 once each with the following sets for (0, 0) :x y (0,0), (3,0),
(0,3), (2.5,4) and create a single plot containing the original CAT along with all four of these
smaller, thin cats (use five different colors/plot styles).

7. Working in homogeneous coordinates, what is the transformation matrix M that will reflect an

image about the line y x ? Create a before-and-after graphic of the CAT.
Suggestion: Rotate first, reflect, and then rotate back again.

8. Working in homogeneous coordinates, what is the transformation matrix M that will shift the

left eye and left pupil of the “CAT with eyes’’ to the left by .0.5 units and then expand them by
a factor of 2 (away from the centers)? Apply this transformation just to the left eye, reflect to
get the right eye, and then plot these two along with the outline of the “CAT with eyes,” to get a
cat with big eyes.

9. The shearing on 2R that shears by b in the x-direction and d in the y-direction is the linear

transformation whose matrix is 1
1
b

c . Apply the shearing to the CAT using several different

values of b when 0,c then set 0b and use several different values of ,c and finally apply
some shearings using several sets of nonzero values for b and .c

10. (a) Show that the 2 2 matrix cos sin
sin cos , which represents the linear transformation for

rotations by angle , is invertible, with inverse being the corresponding matrix for rotations by
angle .
(b) Does the same relationship hold true for the corresponding 3 3 homogeneous coordinate
transform matrices? Justify your answer.

182 Chapter 7: Matrices and Linear Systems

11. (a) Show that the 3 3 matrix

0
0

1 0
0 1 ,
0 0 1

x
y which represents the shift with shift vector 0

0
,x

y

is invertible, with its inverse being the corresponding matrix for the shift using the opposite shift
vector.

12. Show that the 2 2 matrix cos sin
sin cos indeed represents the linear transformation for

rotations by angle around the origin (0,0).
Suggestion: Let (,)x y have polar coordinates (,)r ; then (,)x y has polar coordinates
(,)r . Convert the latter polar coordinates to rectangular coordinates.

13. (Graphic Art: Rotating Shrinking Squares) (a) By starting off with a square, and repeatedly

shrinking it and rotating it, get MATLAB to create a graphic similar to the one shown in Figure
7.19(a).
(b) Next modify your construction to create a graph similar to the one in Figure 7.19(b) but that
uses alternating colors.
Note: This object is not a fractal.

FIGURE 7.19: A rotating and shrinking square of Exercise 13: (a) (left) with no fills; (b)
(right) with alternate black-and-white fills.

14.

(Graphic Art: Cat with Eyes Mosaic) The cat mosaic of Figure 7.20 has been created by taking
the original CAT, and creating new pairs of cats (left and right) for each step up. This
construction was done with a for loop using 10 iterations (so there are 10 pairs of cats above the
original), and could easily have been changed to any number of iterations. Each level upward of
cats got scaled to 79% of the preceding level. Also, for symmetry, the left and right cats were
shifted upward and to the left and right by the same amounts, but these amounts got smaller
(since the cat size did) as we moved upward.
(a) Use MATLAB to create a picture that is similar to that of Figure 7.20, but replace the “CAT
with eyes” with the ordinary CAT.
(b) Use MATLAB to create a picture that is similar to that of Figure 7.20.
(c) Use MATLAB to create a picture that is similar to that of Figure 7.20, but replace the “CAT
with eyes” with the “full CAT” of Figure 7.11.
Suggestion: You should definitely use a for loop. Experiment a bit with different schemes for
horizontal and vertical shifting to get your picture to look like this one.

7.2: Introduction to Computer Graphics and Animation 183

FIGURE 7.20: CAT with eyes mosaic for Exercise 14(b). The original cat (center) has been
repeatedly shifted to the left and right, and up, as well as scaled by a factor of 79% each time we
go up.

15. (Movie: “Sudden Impact”) (a) Create a movie that stars the CAT and proceeds as follows:
The cat starts off at the left end of the screen. It then “runs” horizontally towards the right end
of the screen. Just as its right side reaches the right side of the screen, it begins to shrink
horizontally (but not vertically) until it degenerates into a vertical line segment on the right side
of the screen.
(b) Make a movie similar to the one in part (a) except that this one stars the “CAT with eyes”
and before it begins to run to the right, its pupils move to the right of the eyes and stay there.
(c) Make a film similar to the one in part (b) except that this one should star the “full CAT”
(Figure 7.11) and upon impact with the right wall, the cat’s smile changes to a frown.

16. (Movie: “The Chase”) (a) Create a movie that stars the “CAT with eyes” and co-stars another

smaller version of the same cat (scaled by factors of 0.5 in both the x- and y-directions). The
movie starts off with the big cat in the upper left of the screen and the small cat to its right side
(very close). Their pupils move directly toward one another to the end of the eyes, and at this
point both cats begin moving at constant speed toward the right. When the smaller cat reaches
the right side of the screen, it starts moving down while the big cat also starts moving down.
Finally, cats stay put in the lower-right corner as their pupils move back to center.
(b) Make the same movie except starring the “full CAT” and costarring a smaller counterpart.

17.

(Movie: “Close Encounter”) (a) Create a movie that stars the “full CAT” (Figure 7.11) and
with the following plot: The cat starts off smiling and then its eyes begin to shift all the way to
the lower left. It spots a solid black rock moving horizontally directly toward its mouth level, at
constant speed. As the cat spots this rock, its smile changes to a frown. It jumps upward as its
pupils move back to center and just misses the rock as it brushes just past the cat’s chin. The
cat then begins to smile and falls back down to its original position.
(b) Make a film similar to the one in part (a) except that it has the additional feature that the
rock is rotating clockwise as it is moving horizontally.
(c) Make a film similar to the one in part (b) except that it has the additional feature that the
cat’s pupils, after having spotted the rock on the left, slowly roll (along the bottom of the eyes)
to the lower-right postion, exactly following the rock. Then, after the rock leaves the viewing
window, have the cat’s pupils move back to center postion.

184 Chapter 7: Matrices and Linear Systems

18. (Fractal Geometry: The Cantor Square) The Cantor square is a fractal that starts with the unit

square in the plane: 0 {(,) : 0 1 and 0 1}C x y x y (generation zero). To move to the
next generation, we delete from this square all points such that at least one of the coordinates is
inside the middle 1/3 of the original spread. Thus, to get 1C from 0,C we delete all the points

(,)x y having either 1/ 3 2 / 3x or 1/ 3 2 / 3y . So 1C will consist of four smaller

squares each having sidelength equal to 1/3 (that of 0C) and sharing one corner vertex with

0.C Future generations are obtained in the same way. For example, to get from 1C (first

generation) to 2C (second generation) we delete, from each of the four squares of 1,C all points
(,)x y that have one of the coordinates lying in the middle 1/3 of the original range (for a
certain square of 1C). What will be left is four squares for each of the squares of 1,C leaving a

total of 16 squares each having sidelength equal to 1/3 that of the squares of 1,C and thus equal
to 1/9. In general, letting this process continue forever, it can be shown by induction that the
nth-generation Cantor square consists of 4n squares each having sidelength 1/ 3 .n The Cantor
square is the set of points that remains after this process has been continued indefinitely.
(a) Identify the four similitudes 1 2 3 4, , ,S S S S associated with the Cantor square (an illustration
as in Figure 7.16 would be fine) and then, working in homogeneous coordinates, find the
matrices of each. Next, following the approach of Method 1 of the solution of Example 7.7,
write a function M-file cantorsq1(V1,V2,V3,V4, ngen), that takes as input the
vertices V1 = [0 0], V2 = [1 0], V3 = [1 1], and V4 = [0 1] of the unit
square and a nonnegative integer ngen and will produce a graphic of the generation ngen
Cantor square.
(b) Write a function M-file cantorsq2(V1,V2,V3,V4, niter) that takes as input the
vertices V1, V2, V3 V4 of any square and a positive integer niter and will produce a Monte
Carlo generated graphic for the Cantor square as in Method 2 of the solution of Example 7.7.
Run your program for the square having sidelength 1 and lower-left vertex (1,2) using niter
= 2000 and niter = 12,000.
(c) Write a function M-file cantorsq3(V1,V2,V3,V4, ngen) that takes as input the
vertices V1, V2, V3 V4 of any square and a positive integer ngen and will produce a graphic
for the ngen generation Cantor square as did cantorsq1 (but now the square can be any
square). Run your program for the square mentioned in part (b) first with ngen = 1 then with
ngen = 3. Can this program be written so that it produces a reasonable generalization of the
Cantor square when the vertices are those of any rectangle?

19. (Fractal Geometry: The Sierpinski Carpet) The Sierpinski carpet is the fractal that starts with
the unit square {(,) : 0 1 and 0 1}x y x y with the central square of 1/3 the sidelength
removed (generation zero). To get to the next generation, we punch eight smaller squares out of
each of the remaining eight squares of sidelength 1/3 (generation one), as shown in Figure 7.21.
Write a function M-file, scarpet2(niter), based on the Monte Carlo method that will take
only a single input variable niter and will produce a Monte Carlo approximation of the
Sierpinski carpet. You will, of course, need to find the eight similitudes associated with this
fractal and get their matrices in homogeneous coordinates. Run your program with inputs
niter = 1000, 2000, 5000, and 10,000.

FIGURE 7.21: Illustration of generations zero (left), one (middle), and two (right) of the
Sierpinski gasket fractal of Exercises 19, 20, and 21. The fractal consists of the points that
remain (shaded) after this process has continued on indefinitely.

7.2: Introduction to Computer Graphics and Animation 185

20. (Fractal Geometry: The Sierpinski Carpet) Read first Exercise 19 (and see Figure 7.21), and if
you have not done so yet, identify the eight similitudes 1 2 8, , ,S S S associated with the
Sierpinski carpet along with the homogeneous coordinate matrices of each. Next, following the
approach of Method 1 of the solution of Example 7.7, write a function M-file
scarpet1(V1,V2,V3,V4, ngen) that takes as input the vertices V1 = [0 0], V2 =
[1 0], V3 = [1 1], and V4 = [0 1] of the unit square and a nonnegative integer
ngen and will produce a graphic of the generation ngen Cantor square.
Suggestions: Fill in each outer square in gray, then to get the white central square “punched
out,” use the hold on and then fill in the smaller square in the color white (rgb vector [1 1
1]). When MATLAB fills a polygon, by default it draws the edges in black. To suppress the
edges from being drawn, use the following extra option in the fill commands: fill(xvec,
yvec, rgbvec, 'EdgeColor', 'none'). Of course, another nice way to edit a
graphic plot from MATLAB is to import the file into a drawing software (such as Adobe
Illustrator or Corel Draw) and modify the graphic using the software.

21. (Fractal Geometry: The Sierpinski Carpet) (a) Write a function M-file called

scarpet3(V1,V2,V3,V4, ngen) that works just like the program scarpet1 of the
previous exercise, except that the vertices can be those of any square. Also, base the code not
on similitudes, but rather on mathematical formulas for next-generation parameters in terms of
present-generation parameters. The approach should be somewhat analogous to that of Method
3 of the solution to Example 7.7.
(b) Is it possible to modify the sgasket1 program so that it is able to take as input the vertices
of any equilateral triangle? If yes, indicate how. If no, explain why not.

22. (Fractal Geometry: The Fern Leaf) There are more general ways

to construct fractals than those that came up in the text. One
generalization of the self similarity approach given in the text
allows for transformations that are not invertible (similitudes
always are). In this exercise you are to create a function M-file,
called fracfern(n), which will input a positive integer n and
will produce a graphic for the fern fractal pictured in Figure 7.22,
using the Monte Carlo method. For this fractal the four
transformations to use are (given by their homogeneous
coordinate matrices)

0 0 0 .85 .04 0
1 0 .16 0 , 2 .04 .85 1.6 ,

0 0 1 0 0 0
S S

.2 .26 0 .15 .28 0
3 .23 .22 1.6 , 4 .26 .24 .44 ,

0 0 1 0 0 1
S S

and the associated probability vector is [.01 .86 .93] (i.e., in
the Monte Carlo process, 1% of the time we choose S1, 85% of the time we choose S2, 7% of
the time we choose S3, and the remaining 7% of the time we choose S4).
Suggestion: Simply modify the program sgasket2 accordingly.

FIGURE 7.22: The
fern leaf fractal.

23. (Fractal Geometry: The Gosper Island) (a) Write a function M-file gosper(n) that will input

a positive integer n and will produce a graphic of the nth generation of the Gosper island
fractal, which is defined as follows: Generation zero is a regular hexagon (with, say, unit side
lengths). To get from this to generation one, we replace each of the six sides on the boundary
of generation zero with three new segments as shown in Figure 7.23. The first few generations
of the Gosper island are shown in Figure 7.24.

186 Chapter 7: Matrices and Linear Systems

FIGURE 7.23: Iteration scheme for the definition of the Gosper island fractal of Exercise 23.
The dotted segment represents a segment of a certain generation of the Gosper island, and the
three solid segments represent the corresponding part of the next generation.

FIGURE 7.24: Four different generations of
the Gosper island fractal of Exercise 23. In
order of appearance, they are (a) the zeroth
generation (regular hexagon), (b) the first, (c)
the second, and (d) the fifth generation.

(b) (Tessellations of the Plane) It is well known that the only regular polygons that can
tessellate (or tile) the plane are the equilateral triangle, the square, and the regular hexagon
(honeybees have figured this out). It is an interesting fact that any generation of the Gosper
island can also be used to tessellate the plane, as shown in Figure 7.25. Get MATLAB to
reproduce each of tessellations that are shown in Figure 7.25.

FIGURE 7.25: Tessellations with generations of Gosper islands. The top one (with regular
hexagons) is the familiar honeycomb structure.

7.3: NOTATIONS AND CONCEPTS OF LINEAR SYSTEMS

The general linear system in n variables 1 2, , , nx x x and n equations can be
written as

304 Appendix B: Solutions to All Exercises for the Reader

EFR 7.3: Using the fill command as was done in the text to get the gray cat of Figure 7.3(b), you
can get those other-colored cats by simply replacing the RGB vector for gray by the following: Orange

 RGB = [1 .5 0], Brown RGB = [.5 .25 0], Purple RGB = [.5 0 .5]. Since each of these
colors can have varying shades, your answers may vary. Also, the naked eye may not be able to
distinguish between colors arising from small perturbations of these vectors (say by .001 or even .005).
The RGB vector representing MATLAB’s cyan is RGB = [0 1 1].
EFR 7.4: By property (10) (of linear transformations): 1 1() ();L P L P if we put 0 , we get

that (0) 0L (where 0 is the zero vector). But a shift transformation
0 0(,) (,)VT x y x y V satisfies

0 0 0(0) 0 .VT V V So the shift transformation
0VT being linear would force 0 0,V which is not

allowed in the definition of a shift transformation (since then
0VT would then just be the identity

transformation).

EFR 7.5: (a) As in the solution of Example 7.4, we individually multiply out the homogeneous
coordinate transformation matrices (as per the instructions in the proof of Theorem 7.2) from right to

left. The first transformation is the shift with vector (1,0) with matrix: (1,0) 1

1 0 1
~ 0 1 0 .

0 0 1
T H After

this we apply a scaling S whose matrix is given by 2

2 0 0
~ 0 1 0 .

0 0 1
S H The homogeneous

cooordinate matrix for the composition of these two transformations is:

2 1

2 0 0 1 0 1 2 0 2
0 1 0 0 1 0 0 1 0 .
0 0 1 0 0 1 0 0 1

M H H We assume (as in the text) that we have left in the

graphics window the first (white) cat of Figure 7.3(a) and that the CAT matrix A is still in our
workspace. The following commands will now produce the new “fat CAT”:
>> H1=[1 0 1;0 1 0; 0 0 1]; H2=[2 0 0;0 1 0;0 0 1]; M=H2*H1
>> AH=A; AH(3,:)=ones(1,10); %homogenize the CAT matrix
>> AH1=M*AH; % homogenized “fat CAT” matrix
>> hold on
>> plot(AH1(1,:), AH1(2,:), 'r')
>> axis([-2 10 -3 6]) % set wider axes to accommodate “fat CAT”
>> axis('equal')

The resulting plot is shown in the left-hand figure that follows.
(b) Each of the four cats needs to first get rotated by its specified angle about the same point (1.5, 1.5).
As in the solution to Example 7.4, these rotations can be accomplished by first shifting this point to (0,
0) with the shift (1.5, 1.5) ,T then performing the rotation, and finally shifting back with the inverse

shift (1.5,1.5).T In homogeneous coordinates, the matrix representing this composition is (just like in the

solution to Example 7.4):

1 0 1.5 1 0 1.5cos() sin() 0
0 1 1.5 sin() cos() 0 0 1 1.5 .

0 0 10 0 1 0 0 1
M

After this rotation, each cat gets shifted in the specified direction with (1, 1).T For the colors of our

cats let’s use the following: black (rgb = [0 0 0]), light gray (rgb = [.7 .7 .7]), dark gray (rgb = [.3 .3.
.3]), and brown (rgb = [.5 .25 0]). The following commands will then plot those cats:
>> clf, hold on %prepare graphic window
>> %upper left cat, theta = pi/6 (30 deg), shift vector = (-3, 3)
>> c = cos(pi/6); s = sin(pi/6);
>> M=[1 0 1.5;0 1 1.5;0 0 1]*[c -s 0;s c 0;0 0 1]*[1 0 -1.5;0 1 -
1.5;0 0 1];
>> AUL=[1 0 -3;0 1 3;0 0 1]*M*AH;

Appendix B: Solutions to All Exercises for the Reader 305

>> fill(AUL(1,:), AUL(2,:), [0 0 0])
>> %upper right cat, theta = -pi/6 (-30 deg), shift vector = (3, 1)
>> c = cos(-pi/6); s = sin(-pi/6);
>> M=[1 0 1.5;0 1 1.5;0 0 1]*[c -s 0;s c 0;0 0 1]*[1 0 -1.5;0 1 -
1.5;0 0 1];
>> AUR=[1 0 1;0 1 1;0 0 1]*M*AH;
>> fill(AUR(1,:), AUR(2,:), [.7 .7 .7])
>> %lower left cat, theta = pi/4 (45 deg), shift vector = (-3, -3)
>> c = cos(pi/4); s = sin(pi/4);
>> M=[1 0 1.5;0 1 1.5;0 0 1]*[c -s 0;s c 0;0 0 1]*[1 0 -1.5;0 1 -
1.5;0 0 1];
>> ALL=[1 0 -3;0 1 -3;0 0 1]*M*AH;
>> fill(ALL(1,:), ALL(2,:), [.3 .3 .3])
>> %lower right cat, theta = -pi/4 (-45 deg), shift vector = (3, -3)
>> c = cos(-pi/4); s = sin(-pi/4);
>> M=[1 0 1.5;0 1 1.5;0 0 1]*[c -s 0;s c 0;0 0 1]*[1 0 -1.5;0 1 -
1.5;0 0 1];
>> ALR=[1 0 3;0 1 -3;0 0 1]*M*AH;
>> fill(ALR(1,:), ALR(2,:), [.5 .25 0])
>> axis('equal'), axis off %see graphic w/out distraction of axes.

EFR 7.6: (a) This first M-file is quite straightforward and is boxed below.
function B=mkhom(A)
B=A;
[n m]=size(A);
B(3,:)=ones(1,m);

(b) This M-file is boxed below.
function Rh=rot(Ah,x0,y0,theta)
%viz. EFR 7.6; theta should be in radians
%inputs a 3 by n matrix of homogeneous vertex coordinates, xy
%coordinates of a point and an angle theta. Output is corresponding
%matrix of vertices rotated by angle theta about (x0,y0).

%first construct homogeneous coordinate matrix for shifting (x0,y0)
to (0,0)
SZ=[1 0 -x0;0 1 -y0; 0 0 1];
%next the rotation matrix at (0,0)
R=[cos(theta) -sin(theta) 0; sin(theta) cos(theta) 0;0 0 1];
%finally the shift back to (x0,y0)
SB=[1 0 x0;0 1 y0;0 0 1];
%now we can obtain the desired rotated vertices:
Rh=SB*R*SZ*Ah;

306 Appendix B: Solutions to All Exercises for the Reader

EFR 7.7: (a) The main transformation that we need in this movie is vertical scaling. To help make
the code for this exercise more modular, we first create, as in part (b) of the last EFR, a separate M-file
for vertical scaling:
function Rh=vertscale(Ah,b,y0)
%inputs a 3 by n matrix of homogeneous vertex coordinates, a (pos.)
%numbers a for y- scales, and an optional arguments y0
%for center of scaling. Output is homogeneous coor. matrix of scaled
%vertices. default value of y0 is 0.

if nargin <3
 y0=0;
end
%first construct homogeneous coordinate matrix for shifting y=y0 to
%y=0
SZ=[1 0 0;0 1 -y0; 0 0 1];
%next the scaling matrix at (0,0)
S=[1 0 0; 0 b 0;0 0 1];
%finally the shift back to y=0
SB=[1 0 x0;0 1 y0;0 0 1];
%now we can obtain the desired scaled vertices:
Rh=SB*S*SZ*Ah;
Making use of the above M-file, the following script recreates the CAT movie of Example 7.4 using
homogeneous coordinates:
%script for EFR 7.6(a): catmovieNo1.m cat movie creation
%Basic CAT movie, where cat closes and reopens its eyes.
clf, counter=1;

A=[0 0 .5 1 2 2.5 3 3 1.5 0; ...
 0 3 4 3 3 4 3 0 -1 0]; %Basic CAT matrix
Ah = mkhom(A); %use the M-file from EFR 7.6

t=0:.02:2*pi; %creates time vector for parametric equations for eyes
xL=1+.4*cos(t); y=2+.4*sin(t); %creates circle for left eye
LE=mkhom([xL; y]); %homogeneous coordinates for left eye
xR=2+.4*cos(t); y=2+.4*sin(t); %creates circle for right eye
RE=mkhom([xR; y]); %homogeneous coordinates for right eye
xL=1+.15*cos(t); y=2+.15*sin(t); %creates circle for left pupil
LP=mkhom([xL; y]); %homogeneous coordinates for left pupil
xR=2+.15*cos(t); y=2+.15*sin(t); %creates circle for right pupil
RP=mkhom([xR; y]); %homogeneous coordinates for right pupil

for s=0:.2:2*pi
 factor = (cos(s)+1)/2;
 plot(A(1,:), A(2,:), 'k'), hold on
 axis([-2 5 -3 6]), axis('equal')
 LEtemp=vertscale(LE,factor,2); LPtemp=vertscale(LP,factor,2);
 REtemp=vertscale(RE,factor,2); RPtemp=vertscale(RP,factor,2);
 hold on
 fill(LEtemp(1,:), LEtemp(2,:),'y'), fill(REtemp(1,:),
REtemp(2,:),'y')
 fill(LPtemp(1,:), LPtemp(2,:),'k'), fill(RPtemp(1,:),
RPtemp(2,:),'k')
 M(:, counter) = getframe;
 hold off
 counter=counter+1;
end
(b) As in part (a), the following script M-file will make use of two supplementary M-files,
AhR=reflx(Ah, x0) and, AhS=shift(Ah, x0, y0), that perform horizontal reflections and
shifts in homogeneous coordinates, respectively. The syntaxes of these M-files are explained in

Appendix B: Solutions to All Exercises for the Reader 307

Exercises 5 and 6 of this section. Their codes can be written in a fashion similar to the code
vertscale but for completeness are can be downloaded from the ftp site for this text (see the
beginning of this appendix). They can be avoided by simply performing the homogeneous coordinate
transformations directly, but at a cost of increasing the size of the M-file that we give:
%coolcatmovie.m: script for making coolcat movie matrix M of EFR 7.7

%act one: eyes shifting left/right
t=0:.02:2*pi; counter=1;
A=[0 0 .5 1 2 2.5 3 3 1.5 0; ...
 0 3 4 3 3 4 3 0 -1 0];
x=1+.4*cos(t); y=2+.4*sin(t);xp=1+.15*cos(t); yp=2+.15*sin(t);
LE=[x;y]; LEh=mkhom(LE); LP=[xp;yp]; LPh=mkhom(LP);
REh=reflx(LEh, 1.5); RPh=reflx(LPh, 1.5);
LW=[.3 -1; .2 -.8]; LW2=[.25 -1.1;.25 -.6]; %left whiskers
LWh=mkhom(LW); LW2h=mkhom(LW2);
RWh=reflx(LWh, 1.5); RW2h=reflx(LW2h, 1.5); %reflect left whiskers
 %to get right ones
M=[1 1.5 2;.25 -.25 .25]; Mh=mkhom(M); %matrix & homogenization of
 %cats mouth
Mhrefl=refly(Mh,-.25); %homogeneous coordinates for frown
for n=0:(2*pi)/20:2*pi
plot(A(1,:), A(2,:),'k')
axis([-2 5 -3 6]), axis('equal')
hold on
plot(LW(1,:), LW(2,:),'k'), plot(LW2(1,:), LW2(2,:),'k')
plot(RWh(1,:), RWh(2,:),'k')
plot(RW2h(1,:), RW2h(2,:),'k')
plot(Mhrefl(1,:), Mhrefl(2,:),'k')
fill(LE(1,:), LE(2,:),'y'), fill(REh(1,:), REh(2,:),'y')
LPshft=shift(LPh,-.25*sin(n),0); RPshft=shift(RPh,-.25*sin(n),0);
fill(LPshft(1,:), LPshft(2,:),'k'), fill(RPshft(1,:),
RPshft(2,:),'k')
Mov(:, counter)=getframe;
hold off
counter = counter +1;
end

%act two: eyes shifting up/down
for n=0:(2*pi)/20:2*pi
plot(A(1,:), A(2,:),'k')
axis([-2 5 -3 6]), axis('equal')
hold on
plot(LW(1,:), LW(2,:),'k'), plot(LW2(1,:), LW2(2,:),'k')
plot(RWh(1,:), RWh(2,:),'k')
plot(RW2h(1,:), RW2h(2,:),'k')
plot(Mhrefl(1,:), Mhrefl(2,:),'k')
fill(LE(1,:), LE(2,:),'y'), fill(REh(1,:), REh(2,:),'y')
LPshft=shift(LPh,0,.25*sin(n)); RPshft=shift(RPh,0,.25*sin(n));
fill(LPshft(1,:), LPshft(2,:),'k'), fill(RPshft(1,:),
RPshft(2,:),'k')
Mov(:, counter)=getframe;
hold off
counter = counter +1;
end

%act three: whisker rotating up/down then smiling
for n=0:(2*pi)/10:2*pi
plot(A(1,:), A(2,:),'k')
axis([-2 5 -3 6]), axis('equal')

308 Appendix B: Solutions to All Exercises for the Reader

hold on
fill(LE(1,:), LE(2,:),'y'),fill(LP(1,:), LP(2,:),'k')
fill(REh(1,:), REh(2,:),'y'),fill(RPh(1,:), RPh(2,:),'k')
LWrot=rot(LWh,.3,.2,-pi/6*sin(n)); LW2rot=rot(LW2h, .25,.25,-
pi/6*sin(n));
RWrot=reflx(LWrot, 1.5); RW2rot=reflx(LW2rot, 1.5);
plot(LWrot(1,:), LWrot(2,:),'k'), plot(LW2rot(1,:), LW2rot(2,:),'k')
plot(RWrot(1,:), RWrot(2,:),'k'),plot(RW2rot(1,:), RW2rot(2,:),'k')
if n == 2*pi
 plot(Mh(1,:), Mh(2,:),'k')
 for n=1:10, L(:,n)=getframe; end
 Mov(:, counter:(counter+9))=L;
 break
else
 plot(Mhrefl(1,:), Mhrefl(2,:),'k')

end
Mov(:, counter)=getframe;

hold off
counter = counter +1;
end

%THE END

EFR 7.8: (a) Certainly the zeroth generation consists of 1 = 03 triangles. Since the sidelength is
one, and the triangle has each of its angles being / 3, its altitude must be sin(/ 3) 3 / 2. Thus,

the area of the single zeroth generation triangle is 3 / 4. Now, each time we pass to a new
generation, each triangle splits into three (equilateral) triangles of half the length of the triangles of the
current generation. Thus, by induction, the nth generation will have 3n equilateral triangles of
sidelength 1/ 2n and hence each of these has area 1(1/ 2) 1/ 2 [3 / 2] / 2 3 / 4 .n n n

(b) From part (a), the nth generation of the Sierpinski carpet consists of 3n equilateral triangles each
having area 13 / 4 .n Hence the total area of this nth generation is 3(3 / 4) / 4n . Since this
expression goes to zero as ,n and since the Sierpinski carpet is contained in each of the
generation sets, it follows that the area of the Sierpinski carpet must be zero.

EFR 7.9: (a) The 2 2 0
0
s

s (s > 0), and reflections with respect

to the x-axis: 1 0
0 1 or y-axis: 1 0

0 1 are both diagonal matrices and thus commute with any

other 2 2 matrices; i.e., if D is any diagonal matrix and A is any other 2 2 matrix, then AD = DA. In
particular, these matrices commute with each other and with the matrix representing a rotation through

the angle : cos sin
sin cos . By composing rotations and reflections, we can obtain transformations

that will reflect about any line passing through (0,0). Once we throw in translations, we can reflect
about any line in the plane and (as we have already seen) rotate with any angle about any point in the
plane. By the definition of similitudes, we now see that compositions of these general transformations
can produce the most general similitudes. Translating into homogeneous coordinates (using the proof
of Theorem 7.2) we see that the matrix for such a composition can be expressed as

matrices representing dilations

Appendix B: Solutions to All Exercises for the Reader 309

0
0

cos sin
sin cos
0 0 1

s s x
s s y where s now is allowed to be any nonzero number. If the sign in the second

row is negative, we have a reflection: If s > 0, it is a y-axis reflection; if s < 0, it is an x-axis reflection.
(b) Let 1T and 2T be two similar triangles in the plane. Apply a dilation, if necessary, to 1T so that it

has the same sidelengths as 2T . Next, apply a shift transformation to 1T so that a vertex gets shifted to

a corresponding vertex of 2T , and then apply a rotation to 1T about this vertex so that a side of 1T

transforms into a corresponding side of 2T .

At this point, either 1T and 2T are now the same triangle,
or they are reflections of one another across the common
side. A final reflection about this line, if necessary, will
thus complete the transformation of 1T into 2T by a
similitude.
(c) It is clear that dilations, rotations, and shifts are
essential. For an example to see why reflection is needed,
simply take 1T to be any triangle with three different

angles and 2T to be its reflection about one of the edges (see figure). It is clearly not possible to
transform one of these two triangles into the other using any combination of dilations, rotations, and
shifts.

EFR 7.10: (a) There will be only one generation; here are the outputs that were asked for (in
format short):
A 0 1.0000 2.0000

 0 1.7321 0
1.0000 1.0000 1.0000

A1 0 0.5000 1.0000
0 0.8660 0
1.0000 1.0000 1.0000

A2 1.0000 1.5000 2.0000

 0 0.8660 0
1.0000 1.0000 1.0000

A3 0.5000 1.0000 1.5000
0.8660 1.7321 0.8660
1.0000 1.0000 1.0000

A1([1 2],2) 0.5000
 0.8660

A3([1 2],2) 1.5000
 0.8660

(b) Since the program calls on itself and does so more than once (as long as niter is greater than
zero), placing a hold off anywhere in the program will cause graphics created on previous runs to
be lost, so such a feature could not be incorporated into the program.
(c) Since we want the program to call on itself iteratively with different vertex sets, we really need to
allow vertex sets to be inputted. Different vertex inputs are possible, but in order for the program to
function effectively, they should be vertices of a triangle to which the similitudes in the program
correspond. (e.g., any of the triangles in any generation of the Sierpinski gasket).

 EFR 7.11: (a) S2, S1, S3, S2, S3, S2
(b) We list the sequence of float points in nonhomogeneous coordinates and in format short:
[0.5000 0.8660], [0.2500 0.4330], [1.1250 0.2165], [1.0625 0.9743], [1.5313 0.4871],
[1.2656 1.1096].
(c) The program is designed to work for any triangle in the plane. The reader can check that the three
similitudes are constructed in a way that uses midpoints of the triangle and the resulting diagram will
look like that of Figure 7.15.

EFR 7.12: (a) As with sgasket2, the program sgasket3 contructs future-generation triangles
simply from the vertices and (computed) midpoints of the current-generation triangles. Thus, it can
deal effectively with any triangle and produce Sierpinski-type fractal generations.

310 Appendix B: Solutions to All Exercises for the Reader

(b) For illustration purposes, the following trials were run on MATLAB’s Version 5, so as to illustrate
the flop count differences. The code is easily modified to work on newer versions of MATLAB by
simply deleting the “flops” commands.
V1=[0 0]; V2=[1 sqrt(3)]; V3=[2 0]; %vertices of an equilateral
triangle
 test = [1 3 6 8 10];
>> for i=1:5
flops(0), tic,
sgasket1(V1,V2,V3,test(i)), toc,
flops
end

 (ngen =1) elapsed_time = 0.0600,
ans =191
 (ngen =3) elapsed_time = 0.2500,
 ans =2243
 (ngen =6) elapsed_time = 0.8510,
 ans =62264
 (ngen =8) elapsed_time = 7.2310,
 ans =560900
 (ngen =10) elapsed_time = 65.4640,
ans =5048624

>> for i=1:5
flops(0), tic,
sgasket3(V1,V2,V3,test(i)), toc,
flops
end

 (ngen =1) elapsed_time = 0.1400,
 ans = 45
 (ngen =3) elapsed_time = 0.1310,
 ans =369
 (ngen =6) elapsed_time = 0.7210,
ans =9846
 (ngen =8) elapsed_time = 6.2990,
ans =88578
 (ngen =10) elapsed_time = 46.7260,
ans =797166

We remind the reader that the times will vary, depending on the machine being used and other
processes being run. The above tests were run on a rather slow machine, so the resulting times are
longer than typical.

EFR 7.13: The M-file is boxed below:
function []=snow(n)
S=[0 1 2 0;0 sqrt(3) 0 0];
index=1;
while index <=n
 len=length(S(1,:));
 for i=1:(len-1)
delta=S(:,i+1)-S(:,i);
perp=[0 -1;1 0]*delta;
T(:,4*(i-1)+1)=S(:,i);
T(:,4*(i-1)+2)=S(:,i)+(1/3)*delta;
T(:,4*(i-1)+3)=S(:,i)+(1/2)*delta+(1/3)*perp;
T(:,4*(i-1)+4)=S(:,i)+(2/3)*delta;
T(:,4*(i-1)+5)=S(:,i+1);
end
index=index+1;
S=T;
end
plot(S(1,:),S(2,:)), axis('equal')
The outputs of snow(1), snow(2), and snow(6) are illustrated in Figures 7.17 and 7.18.

EFR 7.14: For any pair of nonparallel lines represented by a two-dimensional linear system:

,a b x e
c d y f the coefficient matrix will have nonzero determinant .ad bc The lines are

also represented by the equivalent system / / / ,a b x e
c d y f where now the coefficient matrix

has determinant (/) (/) 1.a d b c This change simply amounts to dividing the first equation by
.

EFR 7.15: (a) As in the solution of Example 7.7, the interpolation equations p(2) = 4, p(1) = 3,
p(2) = 5, and p(5) = 22 (where 3 2())p x ax bx cx d

	IMNP.7.2
	IMNPAppBSec.7.2

