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Chapter 13: The Finite Element Method 
 
 
 
 
 
 
13.1:  A NONTECHNICAL OVERVIEW OF THE FINITE ELEMENT 
METHOD 
 
The Finite Element Method (FEM) is actually a large collection of numerical 
methods for solving PDEs.  It was first devised as a numerical tool by 
mathematician Richard Courant1 in a 1943 paper on torsion problems [Cou-43], 
and is based on analogous techniques and principles to those developed in the 
early twentieth century for one-dimensional boundary value problems, as were 
presented in Section 10.5.  The method was extensively elaborated on during the 
1950s and 1960s by engineers as a practical approach for solving various PDEs in 
structural engineering.  In the 1960s and 1970s, mathematicians worked to give 
the method a solid theoretical basis and extended it as a tool for solving many 
different PDE problems.  Active research on this method continues today and it 
has become the most commonly used numerical method for partial differential 
equations.  As a very pertinent example, in MATLAB’s PDE Toolbox, all of the 
programs for solving PDEs use FEMs.  Writing even somewhat general programs 
for FEMs is a very complicated task.  Our goal in this chapter will be to explain 
the method and to write some programs to implement it in several specific 
instances.  This should be sufficient for readers needing to delve deeper into FEMs 
to be able to extend the programs into more general ones.  MATLAB’s PDE 
Symbolic Toolbox programs are open to its users to read and modify.  So, in 
principle, after reading this chapter, readers could modify some of the FEM 
programs in MATLAB’s toolbox to suit their exact needs (if not already met).    
 

 
1 Richard Courant was an exceptionally influential mathematician.  He grew up in Germany and had a 
rather difficult childhood, having to work to help support his family while going to school.  He 
eventually entered the Univerisity of Breslau (now Wroclaw, Poland) as an undergraduate and was 
lured to major in mathematics by the exciting lectures in his classes.  He went on to Göttingen for his 
graduate studies where he worked with Hilbert and later became a professor there.    His education was 
interrupted by military service for Germany in WWI, where he developed an effective electronic 
communications system that was implemented for the troops.  Despite the important contributions he 
was making to the University of Göttingen, not to mention his important military service to his country, 
when the Nazis came to power in the early 1930s, he was forced to resign his professorship.  The Nazis 
had decreed that any “non-Aryan” civil servant was to be terminated and having one Jewish 
grandparent was sufficient to make someone “non-Aryan.”  There was supposed to be an exemption for 
individuals who gave Germany military service in WWI, but despite ardent efforts on the part of the 
university to keep him, Courant was still “retired.”   He subsequently accepted an offer at  New York 
University.  The transition was very difficult for him.  Coming from a world-renowned institute and 
having been surrounded by top-notch mathematicians, when he got to NYU, he found his colleagues to 
be very weak and the students likewise poor.   He made use, however, of his extensive contacts and 
was able to hire a large group of strong new faculty.  Today, NYU’s mathematics department, also 
known as the Courant Institute, is considered by many as the premiere applied mathematics institute in 
the world.   
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  The FEM methods basically split up the domain of 
the problem into small pieces, called elements, that 
have simple structure.  There are many different ways 
to perform such decompositions and the geometry 
certainly changes with the dimension of the space.  A 
common approach for two-dimensional domains is to 
triangulate the domain into small triangles.    The 
triangulation must be done in such a way that 
whenever two triangles touch, they will have either an 
entire common edge (and thus two common vertices) 
or just a common vertex.  The reason for this is that 
the FEM approximate solution for the PDE will be 
made up of separate “pieces” on the various elements 
and they need to connect up (interpolate) together in a 
neat fashion.  When a domain has a curved boundary, 
the sizes of the triangles can be made small enough so 
that the triangulation approximates the domain 

reasonably well.   An example of such a triangulation is shown in Figure 13.2.   In 
three dimensions, tetrahedra (pyramids) are commonly used; but the process is still 
known as triangulation.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.2:  A triangulation of a planar domain consisting of a rectangle with two 
circles deleted.  The circular boundary portions are thus approximated by polygons (as 
shown).  This triangulation was created using MATLAB’s PDE Toolbox.    
 
 
  Even in two dimensions, of course, there are numerous ways to perform such a 
triangulation.  We point out some important features of the triangulation in Figure 
13.2.  First, notice that the triangles in the mesh all seem to be roughly the same 
size.  This uniformity is not necessary, but for a general problem on a given 
domain it is usually the best generic triangulation scheme.  Another important 
property is that none of the sidelengths of any triangle in the mesh is much shorter 
than the other two sides of the same triangle.  Another way to describe this 
property is that the area of the inscribed circle of any of these triangles is not much 

 
 
Figure 13.1:  Richard 
Courant (1888−1972), 
German mathematician. 
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smaller than the area of the triangle.   This feature is essential in order that the 
finite element method be stable.     
 
  Just writing a good program to create such generic triangulations is already an 
arduous task.  It must be thought out how the geometry of the original domain 
should be inputted (as a matrix) and then the triangles must be created and stored, 
usually by their vertices.   Additionally, the vertices of the triangulation will need 
to be numbered and it will be helpful for the numbering to be done in such a way 
that the numbers of the three vertices of any triangle are reasonably close.   
 
  Like finite difference methods, finite element methods will discretize the PDE 
into a linear system.  The nature of the discretization, however, is very different 
for FEMs.   Mathematically, the PDE is first converted to a so-called variational 
problem.   This is usually done in one of two ways:  the Rayleigh-Ritz method, 
where the solution of the PDE is recast as the solution of a certain minimization 
problem among a large class of functions, or the Galerkin method, where the 
solution is recast as a certain unique representing function.  Although different in 
philosophy, the two approaches often turn out to be equivalent.   With either 
method, the approximate solution is found by restricting attention to a certain 
finite-dimensional space of so-called admissible functions determined by basis 
functions corresponding to each of the elements.  Even with the type of elements 
being specified, there are numerous choices for the basis functions.  The simplest 
choice would be constant functions, but these do not blend together well.  The next 
simplest choice would be to have linear functions on each element.  For two-
dimensional domains with triangulations, this type of basis function turns out to be 
quite effective.  Over each element, the graph of such a basis function will be the 
triangular portion of a plane (sitting over the two-dimensional triangle).  Since 
three points determine a plane, these basis functions will be flexible enough to 
accommodate specifying values at the three vertices of their triangle, and mesh 
triangles that have common vertices or edges will have their graphs coinciding at 
common points.  The resulting approximating functions will thus be continuous 
over the original domain, but in general will not be differentiable at common 
edges or vertices of different triangles.  More complicated spline-type basis 
functions can be used to overcome this differentiability problem, but, of course, 
the limited benefits of using such more complicated basis functions would have to 
be weighed against the resulting increase in technical difficulties.  For most 
applications on two-dimensional domains with triangular elements, such linear 
basis functions are sufficient and most commonly used.  MATLAB’s PDE 
Toolbox, for example, uses such basis functions.2 

 
2 The programs in MATLAB’s PDE toolbox are designed only to handle PDEs with two space 
variables, and so, for example, they cannot solve three-dimensional elliptic problems such as steady-
state heat distributions and structure of materials.  The programs can, however, accommodate a time 
variable in hyperbolic or parabolic equations.  The reason for this is that FEMs for parabolic and 
hyperbolic problems invoke finite difference schemes for the time derivatives and thus can 
accommodate two space variables in addition to the time variable.   
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Focusing only on (linear combinations of) the basis functions, the FEM will solve 
a linear system to determine the best candidate to solve the variational problem 
(Rayleigh-Ritz or Galerkin) and this will be the approximation to the actual 
solution.   This approximation turns out to be simply the projection of the actual 
solution onto the finite-dimensional space of admissible functions or, informally, 
the best admissible function for solving the variational problem.  Figure 13.3 
shows the FEM solution for the following PDE problem on the domain Ω  of 
Figure 13.2: 
 

0 on , ( , )
/ 0, on outer rectangle

40,  on small circle, 500, on large circle

u u u x y
u n

u u

∆ = Ω =∂ ∂ =
 = =

. 
 
 

(1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.3:  A FEM solution of the steady-state heat problem (1) on the domain and 
triangulation as pictured in Figure 13.2.  Contour lines have been added.   This solution was 
created using MATLAB’s PDE Toolbox.   
 
 
The problem can be thought of as the steady-state heat distribution on the 
rectangular region Ω  (from the Laplace equation 0u∆ = ).  The first boundary 
condition on the edge of the outer rectangle: / 0u n∂ ∂ = , is a Neumann boundary 
condition (n denotes the unit outward normal vector for the domain), stating that 
heat does not flow out of or into the rectangle (i.e., the boundary is insulated).  The 
two constant temperatures on the interior circular boundaries are Dirichlet 
boundary conditions specifying certain temperatures that are fixed on each.  The 
problem may be thought of as a basic version of the cooling of a nuclear reactor 
within some enclosed region (the rectangle); the large very hot circle denoting the 
reactor and the small circle denoting the cooling source (usually a stream of fresh 
water).   
 
  In the triangulation process, it is not always efficient to make the triangles be all 
of essentially the same size.  Indeed, at places where the solution varies 
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drastically, smaller triangles should be used and in areas of small variation larger 
ones can be and should be used.  More triangles entail more work so we should 
use very small ones only where they are needed.  Of course, not knowing the 
solution ahead of time can make it difficult to predict where the solution will be 
varying wildly.  Sharp corners or curves in the domain, as well as areas where the 
coefficients of the PDE (if variable) rapidly change, are usually problem areas.  
There are more sophisticated so-called adaptive methods of the FEM that 
iteratively take into account all available information so as to refine the elements 
accordingly in a way that aims to reach the best possible accuracy with specified 
constraints (such as operating time, number of triangles, etc.).  Figure 13.4 shows 
such an adaptive triangulation for the boundary value problem (1).  Triangulation 
of domains is an art!  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.4:  A triangulation of the planar domain of Figure 13.2 that was obtained 
using an adaptive FEM to solve the steady-state heat problem (1).  Compare with the 
triangulation of Figure 13.2 and, in particular, notice how the triangles closer to the 
boundaries of the circles (facing inward) are much smaller than the farther away triangles. 
This triangulation was created using MATLAB’s PDE Toolbox.    
 
 
  An outline for the rest of this chapter is as follows:  We will be focusing on linear 
elliptic boundary value problems on planar domains.  Our FEM will use piecewise 
linear basis functions on triangulations of the domains.   Section 13.2 will 
introduce some practical techniques for producing effective triangulations of 
planar domains and explain how to construct and manipulate basis functions.   
Section 13.3 will explain the complete program of using a FEM to solve quite 
general boundary value problems on arbitrary planar domains and boundary 
conditions.  The most time-consuming step of the FEM is the construction of the 
linear system whose solution will give the values of the approximate solution.  
This process, known as “the assembly process,” is broken up into an element-by-
element computation involving the calculation of certain double integrals and 
(depending on the boundary data) line integrals.  We will demonstrate with 
examples that it is not efficient to use MATLAB’s integration tools in the 
assembly process.  Indeed, if the elements are sufficiently small (depending on the 
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coefficients of the problem), it turns out to be perfectly adequate to use some 
simple numerical quadrature formulas (for triangles and line segments).  This will 
allow us to attain essentially the same accuracy as with the more elaborate 
integrators but at a very small fraction of the time.   In numerical differential 
equations, much can be learned from experimentation, and this chapter provides 
numerous opportunities in this area.  The committed reader can gain a great deal 
by exploring some of the more advanced topics that are introduced in the 
exercises.    
 
 
13.2:  TWO-DIMENSIONAL MESH GENERATION AND BASIS 
FUNCTIONS 
 
Theoretically, the finite element method for two-dimensional problems shares 
many common threads with the one-dimensional Rayleigh-Ritz methods 
introduced in Section 10.5.  It would behoove the reader to glance over that 
section periodically as he or she proceeds to work through this and the next 
section.  The major practical difference is in the geometry of the two-dimensional 
elements and basis functions versus the very simple one-dimensional elements.  
We will restrict our focus in the text of this chapter to triangular elements and 
piecewise linear basis functions, although some of the exercises will delve into 
other sorts of elements and basis functions.   In this section we show how 
triangulations can be created and give some convenient methods for constructing, 
storing, and manipulating corresponding basis functions.   
 
The two main advantages of the FEM over finite difference methods are its ease in 
dealing with more complicated domains than simply rectangular ones, and its 
flexibility in dealing with many sorts of boundary conditions.  To illustrate 
construction of the basis functions, we use the simple triangulation of the 
hexagonal domain shown in Figure 13.5. 
 
 
FIGURE 13.5:  A simple 
triangulation of a hexagonal domain.  
The eight nodes are labeled in red 
and the eight triangles are also 
labeled.  The ordering is somewhat 
arbitrary.  It is just a coincidence that 
the number of nodes coincides with 
the number of triangles.  At this 
point we left out x- and y-coordinates 
so as to emphasize the element 
numbering.   
 
 
  The nodes in a triangulation are simply the vertices of the triangles.  As in the 
one-dimensional method, each node gives rise to a basis function that takes on the 
value 1 at its corresponding node and zero at all other nodes.  Piecewise linear 
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functions work well here since a linear function is completely determined on a 
triangle once its values are specified on the three vertices.  Furthermore, two linear 
functions so determined on triangles that share an edge will agree on the common 
edge.  The resulting basis function will be the unique piecewise linear function on 
the hexagon having the property that it is linear on each element and takes on the 
value 1 at its associated node and 0 at all other nodes.  In this context the basis 
functions are sometimes known as pyramid functions.  The pyramid function for 
the node #4 of Figure 13.5 is illustrated in Figure 13.6. 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.6:  A graph of the piecewise linear basis or pyramid function 4 4 ( , )x yΦ =Φ  
for node #4 in the triangulation of the hexagonal domain of Figure 13.5.  The function takes 
on the value 1 at node #4, zero at all other nodes, and is linear on each triangle.  Thus, on 
the unshaded triangles, the pyramid function is identically zero.   
 
 
To get formulas for the pyramid functions, we need to introduce coordinates.  For 
the purpose of an example, we assign coordinates as follows: node #3 will be put 
at the origin (0,0), node #4 will have coordinates (1,0), and the coordinates of 
nodes #1 and #7 are (1,1), and (1,−1), respectively.  The corresponding 
coordinates of nodes #2, #5, and #8 are obtained by adding 3/2 to the first 
coordinates of the last three, and node #6 has coordinates (7/2,0).  Knowing these 
coordinates, all of the information of the triangulation can be represented by the 
following two matrices, N(odes) and T(riangles): 
 

1 1 1 3 4
2.5 1 1 2 4
0 0 2 4 5
1 0 2 5 6, .2.5 0 3 4 7

3.5 0 4 5 7
1 1 5 7 8

2.5 1 5 6 8

N T

   
   
   
   

= =   
   
   

−   
   −   

 

 
The eight rows of N give the coordinates of the corresponding numbered nodes, 
the first column entry gives the x-coordinates, and the second column entry the y-
coordinates.  The eight rows of T give the node numbers of the corresponding 
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numbered triangles, in order (see Figure 13.5).  Such matrices will be needed in 
writing programs for the FEM.   
 
EXAMPLE 13.1:  Write down a formula for the basis function 4 4 ( , )x yΦ = Φ  
shown in Figure 13.6.   
 
SOLUTION:  From its piecewise linearity, on each of the eight triangles 

(1 8)T ≤ ≤


 , 4 ( , )x yΦ  will be a linear function and so can be written as  
 

4 4 4
4 ( , ) , ( , )x y a x b y c a x b y c x y TΦ = + + = + + ∈

      

, (2) 
 

where 4 4 4, ,a a b b c c= = =
     

 are real constants to be determined.3   We now fix 
an index   and let the three nodes of T



 be denoted by ( , ), ( , ),r r s sx y x y and 
( , )t tx y  where 4t = .   The graph of such a linear function 4 ( , )z x y= Φ  is a plane 
in three-dimensional space determined by the three nodal values 4 ( , ) 0,r rx yΦ =  

4 ( , ) 0,s sx yΦ =  and 4 ( , ) 1t tx yΦ = .  These nodal equations may be expressed as 
the following linear system:   
 

0
0
1

r r

s s

t t

a x b y c
a x b y c
a x b y c

+ + = + + =
 + + =

  

  

  

. 
 
 

(3) 

 
Putting (3) in matrix notation gives: 
 

1 0
, where M= 1 , , and 0 .

11

r r

s s

t t

x y a
MA Z x y A b Z

cx y

     
     = = =
        







 
 

(4) 

 
Geometrically, since three noncollinear points determine a unique plane, it follows 
that the linear system (3)/(4) will have a unique solution as long as the three nodes 
are not collinear.  This is certainly the case for any triangulation.  We mention one 
further important point that the system will be well conditioned provided that the 
area of the triangle T



 is not much greater than that of the inscribed circle.   This is 
a quantitive way of saying that the three nodes of T



should not be close to being 
collinear (convince yourself of this!).   This can be analytically verified using the 
following explicit formulas for the determinant of M and 1M − : 
 

| det( ) | 2 area( ),M T= ⋅


 (5) 

 

 
3 The superscipts, although technically necessary, can be omitted in this example since there is only one 
basis function under consideration.   
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1
( ) ( ) ( )1 ( ) ( ) ( )

det( ) ( ) ( ) ( )

s t t r r s

t s r t s r

s t t s t r r t r s s r

y y y y y y
M x x x x x x

M x y x y x y x y x y x y
−

− − − 
 = − − −
 − − − 

. 
 
 

(6) 

 

For a proof of the interesting equation (5), the reader is referred to Exercise 22.  
Using (5), equation (6) can be proved by a direct (albeit tedious) verification.  
Equations (5) and (6) plainly show that the matrix is well conditioned as long as 
the triangle is not too long and thin.  Apart from this, the explicit formula (6) is 
useful to build into large-scale FEM programs where such matrices need to be 
inverted large numbers of times in constructing the basis functions.  We continue 
with this example in a way that will help us later when we need to write general 
programs.  We begin by entering the node matrix N and the triangle matrix T into 
our MATLAB session: 
 
>> N=[1 1;5/2 1;0 0;1 0;5/2 0;7/2 0;1 -1;2.5 -1]; 
>> T=[1 3 4;1 2 4;2 4 5;2 5 6;3 4 7;4 5 7;5 7 8;5 6 8]; 
 

Since 4Φ  vanishes over triangles #4, #7, and #8, the coefficients a, b, c are all 
zero for these triangles.  The following loop will give us what we need and is 
easily modified to function in general FEM routines.  It will store the needed 
coefficients of 4Φ  on the remaining triangles in a four-column matrix A:  The first 
column gives the triangle number; the remaining three give the corresponding 
coefficients of 4Φ  as in (2).  Since the coefficients are all fractions, we display the 
output in rational format. 
 
>> format rat, counter=1; 
>> for L=1:8 
if ismember(4,T(L,:))==1 
%checks to see if 4 is a node of triangle #L 
%if yes, next two commands reorder the vector T(L,:) to  
%construct a vector “nv” of length 3 
%of nodes of triangle #L with 4 appearing last 
  index=find(T(L,:)==4); 
  nv=[T(L,1:2) 4]; nv(index)=T(L,3); 

xr=N(nv(1),1); yr=N(nv(1),2); xs=N(nv(2),1); ys=N(nv(2),2);  
xt=N(nv(3),1);yt=N(nv(3),2); 

  M=[xr yr 1;xs ys 1;xt yt 1]; %matrix M of (4) 
Minv=[ys-yt yt-yr yr-ys; xt-xs xr-xt xs-xr; xs*yt-xt*ys xt*yr-xr*yt 
xr*ys-xs*yr]/det(M); 
  % inverse matrix M from (6) 
  abccoeff=Minv*[0;0;1]; %coefficents of basis function on triangle#L 
  A(counter,:)=[L abccoeff']; 
  counter=counter+1; 
end 
end 
>> A 
A = 
 

      1            1           -1            0       
      2            0           -1            1       
      3          -2/3           0           5/3      
      5            1            1            0       
      6          -2/3           1           5/3      

 
From this matrix, we can write down the explicit formula for 4Φ : 
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1

2
52

33 3
4

5
52

63 3

, if ( , ) ,
1, if ( , ) ,

, if ( , ) ,( , ) , if ( , ) ,
, if ( , ) ,

0, otherwise.

x y x y T
y x y T

x x y Tx y x y x y T
x y x y T

− ∈
 − + ∈
− + ∈Φ =  + ∈
− + + ∈


 

 
The reader should verify that these formulas indeed possess the required values at 
the nodes and hence (by linearity) on each element.   
 
EXERCISE FOR THE READER 13.1:  Find formulas for 3Φ  and 5Φ  analogous 
to that found for 4Φ  in the above example.   
 
  The careful reader may have realized that we can further cut our computation 
time down in the solution of the system (4) if we always agree to set it up so that 
( , )t tx y is the vertex on which the value of the local basis function equals 1.  Since 
the inverse of the coefficient matrix M of (4) is explicitly known (6), the matrix 
product MZ will simply be the third column of 1M −  so that in the notation of (4), 
we have (using (5)): 
 

1 .
2 area( )

r s

s r

r s s r

y ya
b x x

Tc x y x y

−  
   = −

⋅    −   









 
 
(6a) 

 
Up to now, most of our plots for functions of two variables have been over 
rectangular domains.  Thus it will be important for us to learn how to get 
MATLAB to plot functions, such as the above basis functions, that are piecewise 
linear and continuous on a set of triangular finite elements.  Such functions are 
determined entirely by their nodal values.  MATLAB can accommodate us quite 
nicely for this task with the following command: 
 

 
 
 
 
trimesh(T,x,y,z,C)   
                   

Given a 3-column matrix T whose rows are node numbers 
for a triangulation, vectors x and y of the coordinates of the 
numbered nodes, and corresponding z coordinates of a 
piecewise linear function on the nodes, this command will 
produce a plot of the resulting piecewise linear function.  
The last argument C is an optional rgb vector that can be 
used to specify color (see Section 7.2).  The default edge 
coloring is proportional to the edge height as in Chapter 11.  
The vector z can be omitted to produce a two-dimensional 
plot of the triangulation.   

 
We are nicely set up to have MATLAB construct a plot of 4Φ .   
 
>> x=N(:,1); y=N(:,2); 
>> z=zeros(8,1); z(4)=1; 
>> trimesh(T,x,y,z) 
>> hidden off %allows hidden edges to appear 
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The resulting MATLAB plot is shown in Figure 13.7.  Since there are only two 
heights for the edges, the coloring is not very elaborate.  With finer triangulations 
and more complicated functions, the resulting trimesh plots can be quite useful and 
attractive, as the one shown in Figure 13.2.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.7:  MATLAB’s graphical rendition of the basis function 4 ( , )x yΦ of Example 
13.1. 
 
 
Given a triangulation of a domain and any function or data f  defined on the 
nodes 1 2, , , ,mN N N  the finite element interpolant of this function/data is given 
by: 

1
( ) ( , ).

j

n

j N
j

f N x y
=

Φ∑  

 
We point out that the graph of this interpolant is most easily obtained by simply 
using the trimesh command directly on the triangle matrix and corresponding 
values of ;f   the calculations for the basis functions are not necessary.  This will 
not be the case for more general elements (see Exercise 26).    
 
  We stress that in the determination of the hat functions ,jΦ

jΦ  on each element (triangle).  On each element ,T


 

( , ) ,j j j
j x y a x b y cΦ = + +

  

, ,x y and 
1 T



.jΦ   Although these local basis functions are quite natural and have simple 
formulas, there is another local basis that often has theoretical advantages.  To 
simplify notation, we fix an element ,T T=



  and denote its three vertices by 
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1 2, ,v v  and 3v  (the exact ordering is unimportant, but let's assume they are 
numbered in counterclockwise order).   The corresponding three standard local 
basis functions 1 2, ,φ φ  and 3φ  are the linear functions determined (exactly) by the 
following conditions: 

{1, if ,( ) 0, if .i j ij
i jv i jφ δ == ≡
≠

(7) 

(The symbol ijδ is called the Kronecker delta symbol.)  It was described earlier 
how each of these functions can be expressed using the original local basis 
functions.  In terms of these local basis functions, any linear function ( , )x yφ  can 
be conveniently expressed as: 

1 1 2 2 3 3( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ).x y v x y v x y v x yφ φ φ φ φ φ φ= + +  (8) 

(Proof:  Both sides are linear functions that agree at the three noncollinear points 
1 2,v v and 3v and so must be identical.)   Each basis function Φ is simply made up 

of pieces of corresponding elements containing the node associated with ,Φ  and 
each of these pieces is a linear combination (8) of the above local basis functions 
for its element.  The previous example thus gave efficient strategies for computing 
all of the local basis functions as well as the corresponding basis functions.   

EXERCISE FOR THE READER 13.2:  (a) Explain why piecewise linear basis 
functions could not be used if rectangular elements (with sides parallel to the axes) 
were used in place of triangular ones.   
(b) Give an example of a simple type of basis function that could be used for such
rectangular elements.  Make sure that your construction will ensure that any given
basis function will be continuous across element edges.

As mentioned Section 13.1, triangulation is an art, and as such there has been a 
notable amount of research in the development of efficient and effective 
triangulation and mesh generation schemes.  One particularly successful and often 
used method in this area is that of the Delaunay triangulation, relative to a given 
finite set of points in the plane.  This triangulation will result in a set of triangles 
whose vertices coincide with the given finite set (of nodes) and with the further 
property that the circumcircle of each triangle in the collection contains only nodes 
that are vertices of that triangle.  This condition favors well-rounded triangles over 
thin ones, which are better for the FEM.    

Definitions:  Suppose that we have a set of distinct points { }1 2, , , np p pP =



 2. P
, ,i j kp p p P∈  with the property that there 

the plane

in
The Delaunay triangulation relative to consists of all triangles

connecting three noncollinear points
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exists a point 2a∈ which lies equidistant to each of the points , ,i j kp p p  and 
closer  to these three than to any other point , , , .p P i j k∈ ≠



  
 
  Figure 13.8 illustrates the Delaunay triangulation for a very small set of four 
points.  It can be shown that the Delaunay triangulation of a finite set of points will 
always be a triangulation for the convex hull4 of this set.   The Delaunay 
triangulation has the important property that the minimum angle of any of its 
triangles is as large as possible for any triangulation of the same set of points (see 
Section 1.2 of [Ede-01]).  This makes the Delaunay triangulation very suitable for 
the FEM.  There is a dual notion of the Delaunay triangulation which leads to an 
equivalent formulation.  We give the relevant definitions:   
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.8:  Two triangulations are shown for the same 4-point set { }1 2 3 4, , , .p p p p  

(a) (left)  The first one violates the Delaunay condition since 3p  lies in the circumcircle of 
the larger triangle.  (b) (right) The second gives the Delaunay triangulation.   Circles and 
centers are drawn in to show the validity of the condition.   
 
 
Definitions:  Suppose that we have a set of distinct points { }1 2, , , np p pP =  in 

the plane 2
  (write ( , )i i ip x y= ).   Relative to this set, for each (1 )ip i n≤ ≤  we 

define the Voronoi region ( )iV p  as: 
 

2( ) { : | | | | for each , }.i iV p p p p p p p P i= ∈ − ≤ − ∈ ≠
 

    (9) 

 
4 The convex hull of a set of points is the smallest convex set which contains each of the points.  There 
is a degenerate case in which some four of the points lie on a common circle (with no other points 
inside this circle).  Here no three of the points will lie any closer to the center of the circle than the 
fourth.  In algorithms for the Delaunay triangulation what is usually done in degenerate cases is that 
one of the points is slightly perturbed (moved).  Since the area of a circle is zero, the probability that a 
fourth point will lie on the circle determined by three points is zero.  In degenerate cases “the” 
Delaunay triangulation is not unique.  The whole subject of triangulation and more general mesh 
generation has become quite an important discipline in itself.  Good references are Chapter 13 of [Ros-
00] and [Ede-01].     
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Here absolute values denote the Euclidean distance (this coincides with the 2-norm 
introduced in Chapter 7).  The Voronoi diagram for P is simply an illustration of 
the totality of all of the Voronoi regions. 
 
  It is not difficult to show that each Voronoi region is a convex set which, if 
bounded, is a polygon (Exercise 27).  In words, the Voronoi region ( )iV p is 
simply the set of all points in the plane whose closest element of the set P is ip .  
If a school district wished to minimize bussing times and costs, and if the points 

ip represented locations of schools, the Voronoi region of a given school would 
roughly include all households whose children would be sent to that school.   
 
The duality result states that two points ,i jp p P∈ are joined by an edge in the 
Delaunay triangulation if and only if their Voronoi regions ( ), ( )i jV p V p share a 
common edge.  The Ukrainian mathematician Georges Voronoi was the first to 
introduce his concept in 1908 [Vor-08].   Subsequently, Russian mathematician 
Boris Delaunay introduced his triangulation in a 1934 paper [Del-34] that he 
dedicated to Voronoi.  These concepts have numerous applications; details of the 
rich and interesting history can be found in the book [OkBoSu-92], which contains 
over 600 references.    Construction of the Delaunay triangulation for a given set 
of n points in the plane has been the focus of much research.  The first algorithms 
that were discovered worked in 4( )O n  time, but modern refined algorithms 
perform in ( log )O n n  time.   Some survey articles of this area are:  [SuDr-95] and 
[BeEp-92], see also Chapter 13 of  [Ros-00].  We will make use of MATLAB’s 
built-in functions that will perform both of the Delaunay triangulation and the 
Voronoi diagrams,  so the task of triangulations will thus be reduced to the more 
simple problem of node deployment.    
 
We proceed now to introduce the relevant MATLAB functions: 
 

 
 
tri = delaunay(x,y)  

If x and y are vectors of the same length n giving the 
coordinates of n (noncollinear) points in the plane, this 
command will output an 3n × matrix tri whose rows 
contain the indices (rel. to the x and y vectors) of the 
triangles in the Delaunay triangulation.   

 
voronoi(x,y)  

If x and y are as above, this command will result in a 
graphic of the Voronoi diagram5 for the set of points 
corresponding to x and y.   

 
Once created, the Delaunay triangulation can be used, just like any other 
triangulation for the FEM.  To view the Delaunay triangulation, we could use the 
above trimesh command.  We illustrate by having MATLAB compute both 

 
5 Actually, the voronoi command will show only the bounded Voronoi regions (i.e., those that have 
finite areas).  There is an easy way to get MATLAB to show all of the regions; see Exercise for the 
Reader 13.2.     



13.2:  Two-Dimensional Mesh Generation and Basis Functions 611 
 

 

objects for the set of node values that we used for the diagram in Figure 13.5.  The 
following commands result in the plot shown in Figure 13.9(a).    
 
>> N=[1 1;5/2 1;0 0;1 0;5/2 0;7/2 0;1 -1;2.5 -1]; 
>> x=N(:,1); y=N(:,2); 
>> tri=delaunay(x,y), trimesh(tri,x,y) 
>> axis([-1 4.5 -1.5 1.5]), hold on 
>> plot(x,y,'ro') 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.9:  (a) (left) MATLAB plot of the Delaunay triangulation of the set of data 
points indicated by circles.  (b) (right) MATLAB plot of the dual Voronoi diagram for the 
same set of data points.   
 
 
The Voronoi diagram in Figure 13.9(b) was obtained using the minor modification 
of the MATLAB’s voronoi program that appears in the following exercise for 
the reader.   
 
EXERCISE FOR THE READER 13.3:  (a) Write an M-file called 
voronoiall(x,y) that will function just like MATLAB’s voronoi, except 
that it will show the unbounded Voronoi regions (not all of them, of course) with a 
reasonable axis view.  (b) Use your program to recreate the plot of Figure 13.9(b).   
 
  Some comments are in order.  First notice that the Delaunay triangulation that 
MATLAB gave us coincides with the one we used previously.  Also notice that 
this example demonstrates that the Delaunay triangulation is not unique (so it 
really should not have been called “the” Delaunay triangulation).  Indeed, the two 
diagonal edges in the center could have been reversed (i.e., reflect the triangulation 
horizontally) to result in another triangulation that also meets the Delaunay 
criteria, or the duality theorem’s criterion.  (The reader should convince himself or 
herself of these assertions.)  The Voronoi regions are of course uniquely defined 
and so the Voronoi diagram is unique.   
 
  Having the delaunay function to work with makes it a lot easier to do a 
triangulation; we need only specify the node points.  This should be done in a way 
that will give rise to a Delaunay triangulation whose triangles do not get too thin.  
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A good general rule is to deploy node points in more or less squarelike 
configurations.  The sizes of adjacent squares should not change too abruptly.  Of 
course, when approaching the boundary, special care must be exercised.  For 
boundary value problems, nodes need to be put on the boundary as well.  It is also 
possible to increase the density of nodes in certain parts of the domain in regions 
where coefficients of the PDE are more active (oscillatory).  The next example 
will create three different triangulations for the same domain, a disk. 
 
EXAMPLE 13.2:  Let Ω denote the unit disk { }2

2
( , ) : 1 .p x y p= ∈ ≤

6   Use 
MATLAB to create and plot three different triangulations of Ω  each having 
between 1000 and 2000 nodes for each of the three requirements: 
(a)  The nodes are more or less uniformly distributed. 
(b)  The density of the nodes increases as 

2
p increases, i.e., as we approach the 

boundary.    
(c)  The distribution of the nodes increases near the boundary point (1,0).  
NOTE:  We left the exact number of nodes somewhat flexible since we want to 
stress node deployment schemes and do not wish to be distracted with trying to 
use a precise number of nodes.   
 
SOLUTION:  Part (a):  We will give two different strategies for this part.   
 
Method 1:  We use a squarelike configuration for the nodes.  For the most part, 
this will be quite a simple scheme, but near the boundary circle 

2
1p = , things 

get a bit awkward.  The square { }2( , ) : 1 , 1S p x y x y= = ∈ − ≤ ≤  includes the 
disk Ω as its inscribed circle.  Since the ratio of the areas of Ω to S is 

21 /(2 2) / 4 0.785...π π⋅ ⋅ = = , it follows that if we uniformly distribute a large 
number of nodes in the interior of S , roughly 78.5% of them will be in the interior 
of Ω .   Since it is a simple matter to uniformly distribute any (square) number of 
nodes in S , we will begin by uniformly distributing about 2000 nodes in S , and 
let δ denote the square side length that is used.   Of these nodes we will keep all of 
them that lie inside of Ω but at a distance of at least / 2δ  from the boundary circle 

2
1p = .  Then we add on a set of nodes on the boundary circle, which are 

uniformly spaced with gaps about equal to δ .  The total amount of nodes thus 
constructed for Ω will be (well) over 1000 and certainly less than 2000.   
 
  To begin, since 2000 44.721...=

2
0 45 2025N = =  interior nodes in S .   The horizontal and vertical gaps should be 

 
6 We are using here the norm notation from Chapter 7:  2 2

2 2
( , )p x y x y= ≡ +  is the 2-norm 

which is simply the (planar) Euclidean distance from ( , )p x y=  to the origin (0,0) . 
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2 /(45 1)δ = + .   The following MATLAB commands will create these nodes, and 
store them in two vectors x0, y0.   
 
>> delta =2/46; counter=1; 
for i=1:45 
for j=1:45 
  x0(counter)=-1+i*delta; y0(counter)=-1+j*delta; 
  counter=counter+1; 
end 
end 
 
Next, from these two vectors we extract those components corresponding to points 
which lie within the slightly smaller circle 

2
1 / 2;p δ= −  the newly created 

vectors will be labeled as x and y.   
 
>> counter=1; 
>> for i=1:2025 
    if norm([x0(i) y0(i)],2) < 1-delta/2 
      x(counter)=x0(i); y(counter)=y0(i); 
      counter=counter+1; 
    end 
end 
 

Finally, since 2 / 144.5133...π δ = , we tack onto the existing vectors x and y an 
additional 145 entries corresponding to 145 equally spaced points on the unit 
circle 

2
1.p =    Figure 13.10(a) shows a plot of this node set. 

 
>> for i=1:145 
    x(i+1597)=cos(2*pi/145*i); y(i+1597)=sin(2*pi/145*i); 
end 
>> plot(x,y,'bo'), axis('equal')  
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 13.10:  (a) (left) Grid of nodes from Method 1 of Example 13.2(a), essentially a 
square pattern except near the boundary.  There are 1742 nodes.  (b) (right) A 
corresponding Delaunay triangulation that has 3337 triangles.   
 
The corresponding Delaunay triangulation will result from the following 
MATLAB commands and is shown in Figure 13.10b. 
 
>> tri=delaunay(x,y); trimesh(tri,x,y), axis('equal') 
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Method 2:  Here we will deploy nodes on circles of increasing radii.  The gaps 
between nodes on a given circle and the gaps between radii of adjacent circles of 
deployment should be all about equal (uniformity).  The final circle will be the 
boundary of Ω : 

2
1.p =    The only mathematical preliminaries are to decide 

how many circles to deploy.  Letting δ denote the common gap size, since the 
radii of the circles increase steadily from 0 to 1, the average radius will be about 
1/2, which means the average circumference will be about 2 (1/ 2) .π π=   Thus the 
average number of nodes on a circle will be / .π δ   Likewise, the number of 
circles of deployment is about 1/ ,δ  so that the total number of nodes will be, 
roughly, 2( / ) (1/ ) / .π δ δ π δ⋅ =   Setting this equal to 1800, say (we want it close 
to 2000, but to insure the actual number of nodes remains under 2000 we play it a 
bit safe), and solving for delta gives /1800 0.04177...δ π= = .  We may now 
turn the node deployment over to MATLAB with this scheme: 
 
>> delta=sqrt(pi/1800); x(1)=0;  y(1)=0; 
>> nodecount=1; ncirc=floor(1/delta); minrad=1/ncirc; 
>> for i=1:ncirc 
    rad=i*minrad; 
    nnodes=floor(2*pi*rad/delta); 
    anglegap=2*pi/nnodes; 
    for k=1:nnodes 
      x(nodecount+1)=rad*cos(k*anglegap); 
      y(nodecount+1)=rad*sin(k*anglegap); 
      nodecount = nodecount+1; 
    end 
end 
 

The plotting of the nodes and then the Delaunay triangulation is done just as in 
Method 1 above; the results are shown in Figure 13.11.   
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.11:  (a) (left) Grid of nodes from Method 2 of Example 13.2(a).  There are 
1887 nodes.  (b) (right) A corresponding Delaunay triangulation that has 3438 triangles.  
Both the node distribution as well as the Delaunay triangulation take on an aesthetically 
more appealing pattern than those of Method 1, since this method better respected the 
symmetry of the domain.   
Part (b):  The requirement is rather vague.  We will use a deployment scheme 
similar to that of Method 2 in part (a).  The new difficulty is that there will need to 
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2
1/ 2 rad(1) 1 1/ 2p = = = −  and deploy 8 (equally spaced) nodes on this circle. 

Our next circle is 
2

3 / 4 rad(2) 1 1/ 4p = = = −  on which we deploy 2 8 16⋅ =  
nodes.  After this we deploy 2 16 32⋅ =  nodes on the circle.  We continue this 
pattern, so that at the nth circle of deployment will be 

2
rad( ) 1 1/ 2np n= = −  on 

which we will deploy 22n+ nodes.  This will continue until the number of 
remaining nodes is still greater than the number of most recently installed nodes 
(on the last circle of deployment).  The final step will be to put all of the remaining 
nodes on the unit circle 

2
1.p =    This plan will create exactly 2000 nodes.  Here 

now is the MATLAB code needed to create such a set of nodes. 
>> xb(1)=0; yb(1)=0; rnodes=1999; %remaining nodes
>> newnodes=8; %nodes to be added on next circle
>> radcount=1; %counter for circles
>> oldnodes=1; %number of nodes already deployed
>> while newnodes < rnodes/2

rad = 1 - 2^(-radcount);
for i=1:newnodes

xb(oldnodes+i)=rad*cos(2*pi*i/newnodes);
yb(oldnodes+i)=rad*sin(2*pi*i/newnodes);

end
oldnodes=oldnodes + newnodes; %update oldnodes
rnodes = rnodes - newnodes; %update rnodes
radcount=radcount+1; %update radcount
newnodes = 2*newnodes; %update newnodes

end  % next deploy remaining nodes on boundary 
>> for i=1:rnodes
xb(oldnodes+i)=cos(2*pi*i/rnodes); yb(oldnodes+i)=sin(2*pi*i/rnodes);
end

The plotting of the nodes and creation of the Delaunay triangulation is obtained in 
the same fashion as in part (a).  The results are shown in Figure 13.12. 

FIGURE 13.12:  (a) (left) Grid of nodes for Example 13.2(b).  There are 2000 nodes.  (b) 
(right) A corresponding Delaunay triangulation that has 3015 triangles.  Such a 
triangulation is useful for BVPs which are particularly sensitive to boundary data.   

be more circles of nodes of larger radii so it will take more work to estimate the 
total number of nodes.  Such an estimate will depend first on how we plan to 
distribute the radii for the circles of nodes.  Here is (but) one scheme.  We start off 
with a single node at the origin (0,0).  Then we move to the circle 
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Part (c):  The way we will deploy nodes is to first partition Ω into subsets 
determined by the regions between pairs of circles centered at (1,0).  For each 
positive integer n, we define the following subset nΩ ⊆Ω : 
 

{( , ) :1/ 2 dist(( , ), (1,0)) 2 (1/ 2 )}.n n
n x y x yΩ = ∈Ω < < ⋅  

 

In words, nΩ  is just the portion of points inside Ω  that lie in between the two 
concentric circles with center (1,0), and radii 1/ 2n and 2 (1/ 2 ).n⋅   A typical such 
region is illustrated in Figure 13.13.  The idea will be to deploy roughly a fixed 
number of nodes (we will use about 100) in each of these regions, up to a certain 
value of the index.  We will also need to put some nodes in the remaining part of 
Ω (which actually can be written as 0 );Ω   here we again put roughly the same 
number, about 100 nodes.  To decide how to put the nodes on the boundary circle 
of Ω  as well as in the interior of the domains ,nΩ  we use the following estimates.   
From Figure 13.13, it is clear that nΩ  is always contained in the half annulus 
(enclosed between the two dotted circles in the figure), and consequently,  
 

2 2 231
2 2Area( ) [ (2 2 ) (2 ) ] 2 .n n n

n
ππ π− − −Ω ≤ ⋅ ⋅ − ⋅ =  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.13:  Illustration of a typical region nΩ (shaded) for the triangulation scheme 
of part (c) of Example 13.2.  Such regions are useful for general triangulation schemes 
when it is desired to have large finer meshes near a special point of the domain.   
 
 
Also, the estimate becomes increasingly accurate as n gets larger.    Now, if we 
deploy a square grid of nodes with (horizontal = vertical) grid spacing = s in the 
interior nΩ , each node would give rise to a square of area 2s inside of nΩ  (to be 
specific, let’s say that the node gets associated with the square of side length s 
having the node as its lower left vertex).  Thus, if we were to put a grid of 100 
such nodes in the interior of nΩ , the area bound above would yield the following 
estimate for s:   
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2 23
2100 Area( ) 2 3 2 /(10 2).n n

ns sπ π− −⋅ ≤ Ω ≤ ⇒ ≤  
We use this as a scheme for the horizontal/vertical grid gap to put between nodes 
that lie inside each nΩ .  The actual number of nodes on each deployment will be 
less than 100 because the above estimates are inequalities.  Since we will 
essentially be placing 100 nodes at each iteration on nΩ (and the corresponding 
portion of the boundary circle adjacent to nΩ ) starting with n = 0, it follows that 
we should let n run up to about 15 in this scheme.   For deploying nodes on the 
boundary circle that lie adjacent to nΩ , we also use s as the gap (this time the 
circular arclength gap) between boundary nodes.  Since the boundary circle has 
radius one, angles are equal to the corresponding boundary arclengths.   We will 
create the nodes using nested loops. On each iteration for n (master loop), the 
loops will first create and store the corresponding value of s, determined by using 
an equality in the above inequality for s.   
 

  Next, a double loop will be set up that will run through a horizontal and vertical 
grid that will cover the domain nΩ and have (horizontal = vertical) grid gap = s.  
For this part, note (again from Figure 13.13) that the domain nΩ  is always 
contained within the rectangle: {( , ) : 1 2 2 1, 2 2n n

nR x y x y− −= − ⋅ ≤ ≤ − ⋅ ≤  
2 2 }n−≤ ⋅    Grid points lying in the interior of nΩ are added as nodes.  Once this 

double nested loop has been executed and interior nodes have been added, the 
same master loop will then move on to install nodes on the two portions of the 
boundary of nΩ  that lie on the unit circle (= boundary of the main domain Ω ).   
We will need to compute the angles (made from (0,0) to the positive x-axis) of the 
two endpoints of the top boundary arc of  nΩ  on the unit circle.  (The node 
deployment on the bottom symmetric boundary arc can be gotten by simply 
negating the y-coordinates of the nodes in the upper arc.)   It is easily shown using 
the law of cosines that these two angles 1θ  and 2θ  (which technically should be 
denoted by 1,nθ  and 2,nθ to indicate their dependence on nΩ ) satisfy: 1cos( )θ =  

21 2 / 2 n− and 2
2cos( ) 1 2 / 2.nθ −= −   The following MATLAB code is an 

implementation of the scheme described above.   
 
>> n=0; nodecount=1; 
>> while n<16 
  s=sqrt(3*pi/2)/10/2^n; hgrid=2/s/2^n; vgrid=4/s/2^n; 
%these will be sufficient horizontal and vertical grid counts to 
%create a rectangular grid (with gap size =s) that will cover the 
%domain Omega_n  
  for i=1:hgrid 
  for j=1:vgrid 
   xnew=1-2/2^n+i*s; ynew=-2/2^n+j*s; 
   pij = [xnew ynew]; p=[1 0]; 
 if norm(pij,2)<1-s/2 & norm(pij-p,2)<2/2^n & norm(pij-p,2)>1/2^n+s/2 
%The three conditions here check to see if the node should be added. 
%The first says that the node should be in the unit circle (with a 
%safe distance to the boundary to prevent interior nodes from getting 
%too close to boundary nodes which will be added later).  The second 
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%and third state that the distance from the node to the special 
%boundary point (1,0) should be between the two required radii.  The 
%last condition has a safety term added to the lower bound to prevent 
%nodes from successive iterations from getting too close.   
   x(nodecount)=xnew; y(nodecount)=ynew; nodecount=nodecount+1; 
  end; end; end 
%The next part of the loop puts nodes on the boundary. 
 theta1=acos(1-2/2^(2*n)); theta2=acos(1-2^(-2*n)/2); 
 if n==0, theta1=theta1-s; end  
 for theta = theta1:-s:(theta2+s/2) 
  x(nodecount)=cos(theta); y(nodecount)=sin(theta); 
  x(nodecount+1)=cos(theta); y(nodecount+1)=-sin(theta); 
  nodecount=nodecount+2; 
 end 
 n=n+1; 
end 
%We need to put a node at the special unsymmetric point (-1,0).  
x(nodecount)=-1; y(nodecount)=0; nodecount=nodecount+1; 
%Finally we put nodes in the portion of the domain between (1,0)  
%and the last Omega_n, and then on the boundary. 
%We need first to bump n back down one unit. 
n=n-1; 
for i=1:hgrid 
for j=1:vgrid 
  xnew=1-2/2^n+i*s; ynew=-2/2^n+j*s; 
  pij = [xnew ynew]; p=[1 0]; 
  if norm(pij,2)<1-s/2 & norm(pij-p,2)< 1/2^n  
   x(nodecount)=xnew; y(nodecount)=ynew; nodecount=nodecount+1; 
  end; end; end 
for theta = -theta2:s:theta2 
  x(nodecount)=cos(theta); y(nodecount)=sin(theta); 
  nodecount=nodecount+1; 
end 
 

Plotting of the nodes as well as the corresponding triangulation is accomplished 
exactly as it was done in the above two parts.  The results are shown in Figures 
13.14 and 13.15.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.14:  Node distribution from the solution of part (c) of Example 13.2.  The 
1457 nodes are constructed in clusters with each cluster getting its grid gap size cut in half 
as we move in towards the special boundary point (1,0).  The exercises will examine some 
related schemes for this domain where there is a smoother transition in gap sizes of nodes as 
we progress toward (0,1).    
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FIGURE 13.15:  (a) (left) The Delaunay triangulation corresponding to the network of 
nodes of Figure 13.14 that has 2733 triangles.  (b) (right) A 20×magnification of the 
triangulation of (a) near the point of focus (1,0).   
 
 
  On the node sets that were constructed in the last example, the Delaunay 
triangulation worked quite nicely because the domain Ω was convex.  In general, 
the Delaunay triangulation of a set of nodes will triangulate the convex hull of this 
set.  Delaunay triangulation can still be used to triangulate a nonconvex domain 
Ω .  This is usually done either by breaking up the domain into convex pieces, 
triangulating each piece, and merging these triangulations or simply by 
triangulating the convex hull and deleting triangles that are not part of the 
domain.7  With either strategy, some sort of (global) reindexing will be necessary 
when constructing the final triangulation.  Our next example will illustrate the 
latter strategy and the exercise for the reader which follows will require also the 
former strategy. 
 
EXAMPLE 13.3:  Let Ω  denote the annular domain { 2( , ) :p x y= ∈

2
1 p≤  

}2 .≤    Use MATLAB to create and plot a triangulation of Ω  having between 200 
and 400 nodes that are more or less uniformly distributed. 
 
SOLUTION:  We use a node deployment strategy that is based on that of Method 
2 of part (a) of the last example, distributing nodes on concentric circles starting at 

2
1p =

2
2.p = δ  denote the (approximate) 

common gap size between nodes (and the circles of node deployment), the average 
radius will be (roughly) 3/2, so that the average circumference will be 
2 (3 / 2) 3 .π π=   The average number of nodes on a circle of deployment will thus 
be 3 /π δ  and the number of such circles will be (roughly) 1/ .δ   This gives the 

 
7 Of course, the convex hull of a set of nodes for a domain will not always coincide with the domain 
even when the domain is convex (e.g., a disk) just as the triangulation will not coincide with the 
domain.  But if the mesh is finer these approximations will become indistinguishable from the true 
objects.   
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following approximation for the total number of nodes: 2(3 / ) (1/ ) 3 / .π δ δ π δ⋅ =   
Setting this equal to 350 and solving for delta gives us a good value to use: 

0.164097....δ =  
 
>> delta=sqrt(3*pi/350); 
nodecount=1; ncirc=floor(1/delta); radgap=1/ncirc; 
 
for i=0:ncirc 
  rad=1+i*radgap; nnodes=floor(2*pi*rad/delta); anglegap=2*pi/nnodes; 
  for k=1:nnodes 
  x(nodecount)=rad*cos(k*anglegap); y(nodecount)=rad*sin(k*anglegap); 
   nodecount = nodecount+1; 
  end 
end 
>> tri=delaunay(x,y); trimesh(tri,x,y), axis('equal') 
>> size(x) 
ans = 1   399 
 
We are just under the desired upper bound on the number of nodes (if we had gone 
over, we could just increase δ  a bit and try again.  The resulting plot of the 
triangulation is shown in Figure 13.16(a). 
 
  Locating and deleting the unwanted triangles in Figure 13.16(a) would be an 
arduous task.  The problem could be greatly simplified if we were to throw in an 
extra “ghost node” at (0,0).  This is done by simply entering  
 
>> x(400)=0; y(400)=0; 
>> tri=delaunay(x,y); trimesh(tri,x,y), axis('equal') 
 

The resulting triangulation shown in Figure 13.16(b) is much easier to work with.  
The triangles that need to get deleted are simply those that have (0,0) (node #400) 
as one of their vertices.  So we simply delete from the triangulation matrix all rows 
that contain the entry 400.   It is very simple to tell MATLAB how to do this, after 
checking there are 722 triangles (elements).   We will make use of the following 
“set difference” command: 
 

c = 
setdiff(a,b) 
        

If a and b are vectors, the output of this “set difference” 
command will be another vector c whose elements consist of 
the different values of a that do not occur in b. 

 
Here is a simple example:   
 
>> setdiff([3 1 2 3], [2]) ans = 1     3 
 
Now back to our problem; the following series of commands will produce the final 
triangulation of Figure 13.16(c). 
   
>> badelcount=1; 
for ell=1:722 
  if ismember(400,tri(ell,:)) 
   badel(badelcount)=ell; 
   badelcount=badelcount+1; 
  end; end 
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>> tri=tri(setdiff(1:722,badel),:); 
>> x=x(1:399); y=y(1:399); 
>> trimesh(tri,x,y), axis('equal') 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.16: (a) (upper left) The Delaunay triangulation obtained from a set of nodes in 
the annular domain { }2

2
( , ) :1 2p x y p= ∈ ≤ ≤  of Example 13.3.  (b) (upper right) 

The Delaunay triangulation for the same set with one additional “ghost node” added at 
(0,0).  (c) Resulting triangulation for the annulus.   
 
 
The schemes introduced in the previous examples can be combined in various 
fashions to give a decent collection of strategies for triangulation of planar 
domains that will be sufficient for our purposes.     The topic of mesh generation 
has been receiving a great deal of attention beginning in the 1990s.  We will see 
later in this chapter that boundary value problems on domains with obtuse ( π> ) 
interior angles (see Figure 13.17 for two examples of such domains) usually 
require special attention with the numerical methods at corresponding boundary 
points.  The next exercise for the reader asks the reader to construct suitable 
triangulations for such domains.   
 
EXERCISE FOR THE READER 13.4:  Using a scheme similar to that of the 
solution of part (c) of Example 13.2, get MATLAB to create and plot 
triangulations each having between 500 and 1000 nodes for the two domains 
illustrated in Figure 13.17(a), (b),  respectively.   In each, arrange it so that the 
distribution of nodes increases near the special boundary point p
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illustration.  For the domain of part (a), take the exterior angle to be 60 ;  for the 
one of part (b), make up your own coordinates and dimensions.    
 

 
 
 
 
 
 
 
 
FIGURE 13.17:  (a), (b)  A pair of domains possessing a boundary point p with an obtuse 
interior angle.  Such boundary points usually require extra care when boundary value 
problems on them are solved numerically.  
 
 
  In each of the triangulations done above, we tried to create them to meet most of 
the desired properties that were mentioned at the beginning of the chapter.  There 
is one notable exception, however, that we did not even contemplate in our 
constructions.  Namely, we made no efforts to arrange that the node numbers for 
any given triangle in the triangulations were reasonably close.  (The constructions 
were already quite complicated without this and the Delaunay triangulation 
program left parts of the construction out of our control).  The reason why this is a 
desirable property to have is that the resulting stiffness matrix will be banded (and 
hence sparse and easier to deal with).  To get a rough idea of the relative 
numbering of the nodes, recall that MATLAB’s function spy, introduced in 
Chapter 11, can gives us a “graph” of the nonzero entries of a matrix.  For 
convenience, we give here a quick example reviewing its syntax. 
 
>> d=ones(1,6); b=2*d(1:5);  
>> A=diag(d)+diag(b,-1)  
 
A = 
 

     1     0     0     0     0     0 
     2     1     0     0     0     0 
     0     2     1     0     0     0 
     0     0     2     1     0     0 
     0     0     0     2     1     0 
     0     0     0     0     2     1 

 
>> spy(A, 'rx') %mark nonzero entries with red 
>> %              x’s; or use spy(A) 
 
 
FIGURE 13.18:  A simple spy plot of a banded 6 6× matrix.  
The locations of nonzero entries are indicated by x’s.  The 
total number of nonzero entries (nz = 11) is indicated below 
the graph.  The spy command is a useful tool for obtaining a 
quick understanding of the structure of a matrix, and, in 
particular, allows for quick detection of sparse and banded   
matrices.   
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The triangulation that we created in the solution of Example 13.2(c) had 1457 
nodes.  The corresponding stiffness matrix A would thus be 1457 1457.×   As in 
the one-dimensional FEM, we will see in the next section that the ija  entry 
(corresponding to node numbers #i and #j) of the stiffness matrix will be given by 
a certain integral involving products of (gradients of) the corresponding basis 
functions iΦ and .jΦ   Throughout the text of this chapter, we will be restricting 
our attention to piecewise linear basis functions, and for such a basis function, say 

,iΦ  it will be zero except on those elements that have node #i as one of their 
vertices.   It follows that ija will be zero unless nodes #i and #j are both vertices of 
the same triangle.  In the following example, we will use this fact to find out all 
possible nonzero entries of the stiffness matrix, draw a spy diagram, and list the 
total number of possible nonzero entries.  The way we will form this matrix is to 
simply put a positive integer at all entries that are possibly nonzero.   
 
EXAMPLE 13.4: Let A denote the 1457 1457×  stiffness matrix for the 
triangulation obtained in Example 13.2(c) and with piecewise linear basis 
functions.   Using the information above, construct a matrix M that will have  
positive integer entries where the corresponding entries of the stiffness matrix are 
zero, and zero entries where the stiffness matrix has zero entries.   
 
SOLUTION:  The way we will construct M will be similar to the so-called 
“assembly” method that we will use in the next section to build stiffness matrices.  
The construction will proceed element by element.  More precisely, we begin with 
M being a 1457 1457×  matrix of zeros.  We then run down the list of 
triangles/elements (all 2733 of them), and for each one we change the 
corresponding entry of the of the matrix M to equal 1 (these are the only entries of 
that stiffness matrix A that could be nonzero).  If an element is represented by the 
three vertices:  [i   j   k], the entries we will bump up by one for this element would 
be the following nine entries  aαβ  where α and β run through i, j, and k.   This is 
a much more efficient scheme rather than constructing the nonzero elements 
directly (in which case for each one a search would need to be done over all 
elements to see if the corresponding pair of nodes share a common element).   
 
  Assuming the matrix tri obtained in the last example (for the Delaunay 
triangulation of the nodes in part (c)), the following commands will “assemble” a 
suitable matrix M, and then create a spy diagram of it (and hence also of the 
stiffness matrix).  The spy diagram is shown in Figure 13.19.   
 
>> M=zeros(1457); for c=1:2733 
  E=tri(c,:); 
  for i=1:3 
  for j=1:3 
   M(E(i),E(j))=M(E(i),E(j))+1; 
  end 
  end 
end 
>> spy(M,'b+') %or use spy(M) to use default '.' markers 
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>> 9835/1457^2 ans = 0.0046 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.19:  A spy diagram of the stiffness matrix for Example 13.4.  The possible 
nonzero entries account for only 0.46% of all of the entries, so this stiffness matrix is sparse 
as stiffness matrices usually are. The fuzzy patterns (top and bottom) correspond to the 
boundary nodes being added after the interior nodes.  The number of such patterns is the 
number of master iterations in the node construction.   
 
 
The last ratio is simply that of the nonzero entries to the total entries of M.  Thus at 
most 0.46% of the entries in the stiffness matrix can be nonzero, and the matrix is 
indeed sparse.   
 
 Can the reader explain the isolated four markers in the upper-right and lower-left 
of Figure 13.19?   
 
 
EXERCISES 13.2 
 
1. (a) For the hexagonal domain of Figure 13.5 with node coordinates as given by the matrix N 

following Figure 13.6, deploy between 1000 and 2000 nodes more or less uniformly throughout 
the domain and boundary and plot the nodal configuration.  You should of course include the 
boundary nodes of Figure 13.5 but not necessarily the interior nodes (#4, #5).   
(b)  Create a corresponding Delaunay triangulation and plot.   

 
2. Repeat parts (a) and (b) of Exercise 1, but this time let the nodes increase in density as one 

moves toward the boundary.   
 
3. Repeat parts (a) and (b) of Exercise 1, but this time let the nodes increase in density as one 

approaches the exterior node #6.     
 

4. Letting Ω  denote the unit disk { }2
2

( , ) : 1p x y p= ∈ ≤  of Example 13.2, use MATLAB to 

create and plot a triangulation of Ω  having between 1000 and 2000 nodes for which the nodes 
increase in density near the segment / 4 / 4π θ π− ≤ ≤ on the boundary, that is, near the (smaller) 
circular arc connecting the points ( 2 / 2, 2 / 2)±  on the boundary.  Let the node distribution 



13.2:  Two-Dimensional Mesh Generation and Basis Functions 625 
 

 

elsewhere in the disk be more or less uniform.   
Suggestion:   Use the solution to part (c) of Example 13.2 for some relevant ideas.  First deploy 
some nodes in a circle centered at (0,0), say 

2
0.5,p ≤  then use a loop to deploy nodes in the 

annuli  nA = 1
2

{ : 1 2 1 2 },n np p +− ≤ ≤ −  n = 1, 2, ….  As an indicator of closeness to circular 

arc (for points (x,y)) in nA use the inequality tan( / ) 1 2 2 .ny x ≤ + ⋅     
 
5. Repeat Exercise 4 with the modification that node distribution should increase near the 

boundary.  For the portion of the boundary complementary to / 4 / 4,π θ π− ≤ ≤  make the rate 
of increase in node density to be roughly 10% compared to the rate of increase near the special 
portion.   

 
6. (a) Write an M-file, call it [x y tri]=circtri(angle1, angle2, maxnodes) that 

will do the following.  The input variables angle1 and angle2 denote two angles on the unit 
circle such that  0 ≤ angle2 − angle1 2 .π<   The M-file will create a set of nodes, stored in the 

output variables x and y for the triangulation of the unit disk { }2
2

( , ) : 1p x y p= ∈ ≤  in a 

way analogous to the one explained in Exercise 4 (for the special case angle1 = / 4π−  and 
angle2 = / 4π ) but with the total number of nodes deployed being between the input variable 
maxnodes and half of this variable.  Thus maxnodes should be a positive integer, at least 
equal to, say, 20.  The final output variable tri will be a three-column matrix corresponding to 
the Delaunay triangulation of the node set.  Note that the syntax includes the possibility that 
angle1 = angle2, in which case a triangulation similar to that done in Example 13.2(c) is 
required.   
(b) Use your program to redo Exercise 4. 
(c) Run your program, and plot the nodes and resulting triangulations for each of the following 
sets of input variables: 
(i)   angle1 = / 2,π  angle2 = 5 / 6,π  maxnodes = 500 
(ii)  angle1 = ,π−  angle2 = / 2,π  maxnodes = 1500 
(iii) angle1 = 7 / 6,π  angle2 = 11 / 6,π  maxnodes = 1200 

 
7. (a) Write an M-file, call it [x y tri]=circtri2(angle1, angle2, maxnodes, 

r), that has the same syntax as that explained in Exercise 6, except that there is an additional 
input variable r which is to be a positive number less than 1 and the triangulation will be 
performed as explained in Exercise 5 (for the special case angle1 = / 4π−  and angle2 = / 4π , 
and r = 0.1).  The parameter r will denote the relative density that nodes are increasing as we 
near the complementary arc compared to when we near the arc angle1 θ< < angle2.     
(b) Use your program to redo Exercise 5. 
(c) Run your program, and plot the nodes and resulting triangulations for each of the following 
sets of input variables: 
(i) angle1 = / 2,π  angle2 = 5 / 6,π  maxnodes = 500, r = 0.25 
(ii) angle1 = ,π−  angle2 = / 2,π  maxnodes = 1500, r = 0.05 
(iii) angle1 = 7 / 6,π  angle2 = 11 / 6,π  maxnodes = 1200, r = 0.025.  

 
8. (Triangulating General Convex Polygons) (a) Write an M-file, call it [x y 

tri]=unipolytri(xv, yv, maxnodes), that will do the following.  The input 
variables xv and yv denote the vectors corresponding to the x- and y-coordinates of vertices of a 
convex polygon which are assumed to be ordered in counterclockwise fashion around the 
boundary.  The first vertex should also be the last vertex (to close the polygon).    The last 
variable maxnodes denotes a positive integer, say, at least 20.  The program will create a set of 
nodes for a triangulation of the polygon and its boundary that will be stored in the output 
variables x and y.  The nodes are to be configured in a square pattern (cf., Method 1 of the 
solution to Example 13.2(a)) throughout the polygon and its boundary.  The number of nodes 
deployed should be somewhere between maxnodes and half of this number.  The third output 
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variable tri denotes a 3-column matrix corresponding to the Delaunay triangulation for the 
node set which is constructed.   
(b) Use your program to redo Exercise 1. 
(c) Run your program, and plot the nodes and resulting triangulations to obtain triangulations for 
each of the following convex polygons using between 200 and 400 nodes for each.  
(i) The rectangle with vertices ( 1, 10).± ±  
(ii) The triangle with vertices (0,0), (1,0), (0,8). 
(iii) A regular octagon unit sidelength.   
(iv) The septagon with vertices  (0,0), (2,0), (16,1), (16,4), (13,5),(11,4), (1,3). 
Suggestion:  One way to view a convex polygon is that its set of points can be described as the 
intersection of all points in the plane which simultaneously lie on the correct side of each of its 
edges.  Each such edge requirement can be written mathematically in the form ax by c+ ≤ .  Set 
up a grid of about maxnodes nodes in the rectangle {( , ) : min( ) min( ),R x y xv x xv= ≤ ≤  
min( ) min( )},yv y yv≤ ≤  then use each of the edge requirements (put in form ax by c+ <  to 
save boundary points for later) to decide with a loop which of these points should be interior 
points.  Finally put nodes on the boundary with appropriate density.  Make sure that there are no 
interior nodes that are too close to the boundary.  That the number of nodes put in the polygon 
will satisfy the required bounds follows from the fact that the area of the polygon is at least half 
the area of the rectangle R (why?).   

 
NOTE:  (Triangulating General Polygons) Since any polygon can be decomposed into convex pieces, 
the program unipolytri of Exercise 8 can be used to essentially uniformly triangulate general 
polygons.  For example, the polygon of Figure 13.17(b) is not convex but can be written as a union of 
two (convex) rectangles 1R  and 2 ,R  that have corresponding areas 1A  and 2.A   (There are a couple 
of ways to do this.)  Suppose we wish to triangulate the region using somewhere between 500 and 1000 
nodes.  We could run the program unipolytri on 1R  using maxnodes to be about  

1 1 21000 /( )A A A+  and then on 2R  using maxnodes to be about 2 1 21000 /( ).A A A+   The ratios attempt 
at allocating an appropriate number of nodes to each piece.  We can pretty much juxtapose these two 
node sets to arrive at a node set for the original polygon (after reindexing and deleting some nodes at 
the common interior interface boundary). This idea, and its extensions to greater numbers of convex 
pieces, is explored in the following three exercises.  In particular, these exercises require the reader to 
have completed Exercise 8(a).    
 
9. Use the idea of the above note to redo Exercise for the Reader 13.4(b). 
 
 
10. Use the idea of the above note to triangulate, using between 400 and 800 nodes, the decagon 

that has the following vertices: ( 2,0), ( 1, 1), ( 2, 2).± ± ± ± ±   Plot both the node diagram as well as 
the triangulation.   

 
11. Consider the symmetric (nonconvex) polygon consisting of the rectangle with vertices: 

( 1, 1), ( 1,0)± − ±  with two (left and right) triangles with vertices:  ( 1,1), ( 1,0), (0,0)± ±    joined 
on top. 
(a)  Apply the method in the above note to triangulate this region by splitting it into the left and 
right halves (which are each convex).  Display the node configuration and corresponding 
triangulation. 
(b) Apply the method in the above note to triangulate this region by splitting it into the 
following three convex pieces:  the bottom rectangle, and the two triangles.   Display the node 
configuration and corresponding triangulation.  Does the density appear uniform?  If not, 
explain, and adjust the ratios of node densities to correct the problem.   

 
The next three exercises will involve triangulations of the domains having domains with curved 
boundaries illustrated in Figure 13.20. 
 
 



13.2:  Two-Dimensional Mesh Generation and Basis Functions 627 
 

 

 
 
 
 

 
 
 
FIGURE 13.20:  Four domains with curved boundary portions:  (from left)  (a)   An ellipse, (b) a 
square with two circular holes,  (c) a disk with a square hole, (d) an airfoil removed from a rectangle.   
 
 
12. Let the elliptical region Ω  of Figure 13.20(a) have equation (for its boundary):  2 24 4.x y+ =    

Use MATLAB to create and plot  triangulations of Ω   having between 400 and 800 nodes and 
with the following additional properties:   
(a) The nodes are more or less uniformly distributed with essentially a square grid (as in Method 
1 of part (a) in the solution of Example 13.2).   
(b) The nodes are deployed on concentric ellipses of the same eccentricity as the boundary 
ellipse (cf. Method 2 of part (a) in the solution of Example 13.2).  
(c) The nodes are deployed in concentric ellipses (as in part (b)) but the density increases as we 
near the boundary (cf. part (b) in the solution of Example 13.2).   
(d) The density of the nodes increases as we approach the interior point ( , ) (1,0)x y = and such 
that between 20 and 30 nodes are deployed on the boundary  (cf. Method 2 of part (a) in the 
solution of Example 13.2). 

 
13. Let the region Ω  of Figure 13.20(b) be specified as follows:  The square (outside) boundary 

has equations: 0,2, 0,2x y= = and the removed circles have the following centers and radii:  
upper left circle:  center = (0.5, 1.5), radius = 0.25; lower right circle:  center = (1.5, 0.5), radius 
= 0.1.  Use MATLAB to create and plot triangulations  of Ω  having between 400 and 800 
nodes and with the following additional properties:    
(a) The nodes are, more or less, uniformly distributed with essentially a square grid (cf.  Method 
1 of part (a) in the solution of Example 13.2).   
(b) The density of the nodes increases as we near each of the two interior circle boundary 
portions and such that the square boundary has between 20 and 30 nodes.      

 
14. Let the region Ω  of Figure 13.20(c) be specified as follows:  The outside circle has:  center = 

(0, 0) and radius = 2; the inside square has equations: 1, 1x y= ± = ± .  Use MATLAB to create 
and plot triangulations of Ω  having between 400 and 800 nodes and with the following 
additional properties:     
(a) The nodes are more or less uniformly distributed with essentially a square grid (cf. Method 1 
of part (a) in the solution of Example 13.2).   
(b) The nodes are deployed on concentric circles (to the outer boundary circle) and more or less 
uniformly distributed.  
(c) The density of the nodes increases as we near any of the four corner points on the inside 
square boundary and the outside circle will have between 20 and 30 nodes.     

 
15. Let Ω  denote the region of Figure 13.20(d).  (a) Use MATLAB to plot an airfoil (the inside 

boundary of Ω ) by setting up a set of points on the boundary of the foil.  Then enter (as 
different vectors) the four vertices of an appropriate rectangle for the outer boundary of Ω .  
Your foil does not have to be identical with the one in the figure, but should more or less 
resemble it.  We are more concerned here with triangulations rather than aerodynamics.  Use 
MATLAB to create and plot triangulations of Ω  having between 400 and 800 nodes and with 
the following additional properties:    
(b) The nodes are more or less uniformly distributed with essentially a square grid (cf.  Method 
1 of part (a) in the solution of Example 13.2).   
(c)  The density of the nodes increases as we near the airfoil (inside) part of the boundary and 
the outside rectangle will have between 20 and 30 nodes.   See Figure 13.21 for examples of 
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some related triangulations. 
Suggestions:    To find appropriate x and y vectors for the foil, it is probably easiest to copy the 
figure down on graph paper and record a set of ordered (so it will plot correctly) vertices on the 
foil that is dense enough so as to render a decent plot.  A more elaborate scheme would be to 
build up the boundary in terms of piecewise cubic splines whose derivatives match up on the 
interfaces (see the end of Section 10.5).   MATLAB has a useful command for some of the tasks 
of this problem called inpolygon that will test if a given point lies within a given polygon: 
 
 
 
 
test = inpolygon(x,y, 
xpoly, ypoly)   
                                    

If xpoly and ypoly are the x- and y-coordinates of a 
set of vertices defining a polygon and x and y are the 
coordinates of any point in the plane, the output test 
will be 1 if the point (x,y) lies inside or on the boundary 
of the polygon and 0 otherwise.  If x and y are vectors 
for a set of points, the output test will be a 
corresponding vector of 1’s and/or 0’s. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 13.21:  Two triangulations of airfoils.  (a) (left) A single component airfoil similar to that in 
Figure 13.20(d).  The triangulation is structured using lines normal to the surface (with increasing 
density as we near the boundary).  (b)  A more complex airfoil with flaps.  The triangulation is done in 
a way that the node density increases as we near crucial portions of the configuration.8   
 
 
NOTE:  (Rectangular Elements)  For domains whose boundaries are made up of only vertical and 
horizontal segments, rectangular elements are often a popular choice for the FEM.  A typical 
rectangular element is illustrated in Figure 13.22(a).  If we use just the four vertices as the nodes of 
each rectangular element, then each local basis function has four degrees of freedom, so linear 
functions (whose graphs are planes) are no longer permissible to use as local basis functions.  Popular 
choices for basis functions in this case are piecewise bilinear functions:  

.axy bx cy d+ + +  

These functions reduce to linear functions on any of the four edges of the rectangle so that continuity is 
assured across boundaries when elements are put together.  Note that this would not be the case if the 
element were an arbitrary quadrilateral (if not all four sides are parallel to one of the axes).  The next 
four exercises look more closely into rectangular elements. 

 
 
 
 

 
8 These two triangulations were created by Tim Barth (at the NASA Ames Research Center) and we 
thank him for his kind permission to include them in this text.  Such triangulations of airfoils coupled 
with the FEM are used to model aerodynamics and design space and air vessels.     
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FIGURE 13.22:   (a)  (left) Illustration of a typical rectangular element with its four nodes consisting 
of its vertices.  (b) (right) Tessellation of a domain into rectangular elements.   
 
 
16. For the domain in Figure 13.22(b), let the outer vertices be (1,1), (7,1), (7,3), (3,3), (3,6),  (7,6), 

(7,8), and (1,8).  Tessellate the domain with square elements having unit sidelength (so there 
should be 30 elements).   
(a) Write down a formula for the basis function (2,2) ( , )x yΦ  corresponding to the interior node 

(2,2).   
(b) Use MATLAB to draw a three-dimensional graph of this basis function. 
(c) Repeat parts (a) and (b) for the basis function (1,1) ( , )x yΦ  corresponding to the interior node 

(1,1). 
(d) Are these basis functions differentiable (smooth) across all edges of adjacent elements?  (It 
was already pointed out that they are continuous across edges, and this should be evidenced 
from the graphs.) 

 
17. Let the domain in Figure 13.22(b) have the vertices and tessellation of the last exercise.  On this 

domain, consider the following function: 
2

2

2

2

[( 1) / 2] , if y 3,
[( 1) / 2] (2 / 3) | 9 / 2 |, if 3 y 9 / 2,( , )

[( 1) / 2] (2 / 3) | 9 / 2 |, if 9 / 2 y 6,
[( 1) / 2] , if y 6,

x
x yf x y

x y
x

− ≤
− − ≤ ≤=

− − − ≤ ≤
− − ≥







 

(a) Use MATLAB to draw a three-dimensional graph of this function.     
(b) Use MATLAB to draw a three-dimensional graph of the finite element interpolant to this 
function using the basis functions (Exercise 16) for the square elements of the tessellation. Note 
that this approximation is simply the function: 

(1,1) (1,2)(1,1) ( , ) (1, 2) ( , ) ,f x y f x yΦ + Φ +  

where each term of the sum corresponds to a node of the tessellation.  
(c) Create and plot a corresponding approximation to f(x,y) that arises from the triangulation of 
the domain using 60 triangles, each square element giving rise to two triangular elements via the 
diagonal from lower left to upper right.   
(d) Repeat part (b) except this time use squares of sidelength 1/4 in the tessellation. (So there 
will be 16 times as many elements.) 
Suggestion:  In parts (b) and (d), use the  meshgrid command for each element and use the 
hold on command. 

 
18. The standard rectangular element has vertices ( 1, 1).± ±   (a) Show that the corresponding four 

local basis functions (viz. (7)) are given by the following formulas (the ordering of the nodes is 
as in Figure 13.22a): 

3 2
4 1

( , ) (1/ 4)(1 )(1 ), ( , ) (1/ 4)(1 )(1 ),
( , ) (1/ 4)(1 )(1 ), ( , ) (1/ 4)(1 )(1 ).
x y x y x y x y
x y x y x y x y

ρ ρ
ρ ρ

= − + = + +
= − − = + −  

(The local basis function iρ corresponds to the vertex iv and they are written with the same 
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orientation as the vertices appear in the element.)  
(b) Use MATLAB to draw three-dimensional graphs of each of these four local basis functions. 

 
19. (a) Find formulas, as in Exercise 18, for the four local basis functions for a general rectangular 

element with vertices: ( , ), ( , ), ( , ), ( , ).a b a h b a h b k a b k+ + + +   Your formulas will depend, of 
course, on the parameters a, b, h, and k.    
(b) Find an affine mapping ( , ) ( , )x y F x y=    that carries the standard rectangular element of 
Exercise 18  (thought of as lying in the -plane)xy  onto the general rectangular element of part 
(a) (thought of as lying in the xy-plane).   In matrix form the mapping can be written as 

,x xA vy y
   = +      





 where A is a 2 2× matrix and v is a 2 1×  vector.  How is the determinant of 

the matrix A related to the areas of the two rectangular elements? 
Suggestion:  For part (a), try first by trial and error for some simple specific parameters; let 
them get more general and look for patterns.    For example, you might start with a = −1, h = 2, 
b = −1, k = 1.  These parameters are very close to those of the standard element with one 
difference (h is 2 instead of 1).  Next try changing h to 3, keeping all else fixed.  Then use a = 
−1, h = 1, b = −1, k = 2;  finally change a and b to other values, etc.  Alternatively, part (a) can 
be done quite elegantly using part (b).  See Exercise 23 for the relevant idea.    

 
20. We define a planar domain Ω  to be horizontally blocklike if it has the following form: 

{( , ) : , 0 ( )},x y a x b y xλΩ = ≤ ≤ ≤ ≤  
where ( )xλ is a positive-valued step function on a x b≤ ≤ , i.e., there is a partition of 
a x b≤ ≤ : 0 1 2 1na a a a a b+= < < < < =  into 1n +  subintervals 1[ , ]i i iI a a−=  (1 1)i n≤ ≤ +  

and corresponding positive numbers ic (1 1)i n≤ ≤ + , such that ( )xλ  can be written as:  

( ) i ix c x Iλ = ⇔ ∈ (1 1)i n≤ ≤ + .  A typical horizontally blocklike domain is illustrated in 
Figure 13.23. 
 

 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.23:  Illustration of a typical horizontally blocklike domain Ω for Exercise 20.   
 
(a) Write an M-file,  [x y nodes elems]=recttess_hbd_basic(a,c,h), that will 
perform a basic rectangular tessellation of a horizontally blocklike domain in the following 
fashion.  The input parameters are firstly two vectors a and c that contain the defining 
parameters of the horizontally blocklike domain to be tessellated. It is assumed of course that c 
has one less component than a, the components of a are increasing, and the components of c 
are positive (otherwise they would not define a horizontally blocklike domain).  
The final input variable, h, will be the (approximate) sidelength of each of the rectangles used in 
the tessellation. More specifically, each of the elements (rectangles) in the tessellation should 
have its length (l) and width (w) lying within the interval:  1

2 h ,w l≤ ≤  2 .h⋅   The tessellation 

will be a basic one in the sense that it will be completely determined by a single set of horizontal 
and vertical grid lines.  (Note:  This is not the case for the tessellation of Figure 13.22(b), since 
different sets of vertical lines are used for the grids in the upper and lower passages.)  The first 
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two output variables x and y are vectors of the values of the corresponding vertical lines and 
horizontal lines defining the tessellation.  The third output variable, nodes, is a 2-column 
matrix giving all of the nodes of the tessellation.  The fourth and final output variable, elems, 
is a 4-column matrix giving the node numbers of the each of the elements, where the ordering of 
the elements starts at the lower left, moves all the way up, then back down to the bottom to the 
next element on the right, and so on.   
(b) Run your program using the following sets of input variables:  
(i)   a = [1 3 4 7 9 10], c = [8 4 12 2 10], h  =  3, 
(ii)  a = [1 3 4 7 9 10], c = [8 4 12 2 10], h  =  1, 
(iii) a = [1 3 4 7 9 10], c = [8 4 12 2 10], h  =  0.13, 
and for each of these for which a tessellation is created, plot the tessellation.  For (iii), your plot 
should look like the one shown in Figure 13.24. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.24:  A tessellation of a horizontally blocklike domain obtained using a program of 
Exercise 16 using the input data of part (b)(iii).  There are 4694 nodes and 4432 rectangular 
elements.  
 
Suggestions:  Part (a):  First use the sort command to create a vector cvals of the values of 
c (in increasing order), with zero appended as the smallest value.   Now find the minimum gaps 
occurring in the vectors cvals and a.  The inputted sidelength should not be too small 
relative to the smaller of these two gaps.  If the sidelength exceeds, say, twice this 
minimum gap value, have the function exit with an error flag (and no tessellation).  Now move 
on to defining a vector x for the vertical gridlines of the tessellation.  Use a loop, running 
through each of the gaps determined from the values of a.  If the size of a certain gap is less 
than twice the sidelength, let x simply contain the values of a at the ends of this gap (no 
interior grid values); otherwise, use k − 1 interior and equally spaced gridlines within the gap, 
where k=ceil(gap/sidelength).  (You need to verify that this will result in elements 
having horizontal sidelengths within the desired bounds.)  In a similar fashion, define a vector y 
for the horizontal gridlines of the tessellation.  Next, use the vectors a, c, x, and y to define the 
matrix nodes.  This can be done with a double loop, but note that you will need to set it up so 
the larger c value is used in cases where x(i) lies on an interface of two blocks.   Finally use the 
vectors x, y and the matrix nodes to create the matrix elems of elements.  You should set 
things up so that for a given element (row of the elems matrix) the nodes progress, say 
counterclockwise, around the element.  With this being done, plotting of the tessellations (part 
(b)) can easily be accomplished using the following simple loop: 
hold on, [e1  e2]=size(elems); 
for i=1:e1 
R=nodes(elems(i,:),:); 
xr=R(:,1); xr(5)=xr(1);yr=R(:,2); yr(5)=yr(1); 
plot(xr,yr) 
end 
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MATLAB’s find command can be useful for many parts of this program.     
 
21. (a) Referring to Exercise 20, formulate the definition of the corresponding concept of a 

vertically blocklike domain.   
(b) Write an M-file:   

[x y nodes elems]=recttess_vbd_basic(a,c,sidelength) 
that will perform a basic rectangular tessellation of a vertically blocklike domain in a similar 
syntax and fashion to the program of part (a) of Exercise 16.  Here, the input variable a is an 
increasing vector corresponding to the y-values of endpoints of the blocks, and the vector c 
(length one less than y) gives the corresponding horizontal lengths of the blocks.   
(c) Run your program using the following sets of input variables:  
(i)   a = [2 3 5 6 8 10], c = [6 8 7 4 2], h = 3, 
(ii)  a = [2 3 5 6 8 10], c = [6 8 7 4 2], h = 1, 
(iii) a = [2 3 5 6 8 10], c = [6 8 7 4 2], h = 0.13. 
Suggesions:  Refer to those of Exercise 20 for ideas.    If the reader has already completed 
Exercise 20(a), the current program could invoke that of Exercise 20 along with a rotation of 
axes (viz.  Section 7.2).  After all, a vertically blocklike domain is simply a rotation of a 
horizontally blocklike domain and vice versa.  The same goes for corresponding tessellations.    

 
22. Prove identity (5) equating the area of a triangle in the plane with vertices: ( , ),r rx y  

( , ),s sx y and ( , )t tx y  to half the absolute value of determinant of the matrix  

1
M= 1

1

r r
s s
t t

x y
x y
x y

 
 
 
 

. 

Suggestion:   First use some properties of determinants from Chapter 7 to observe that the 
determinant will not change if a constant X is added to all of the x-coordinates (first column) 
and/or a constant Y is added to all the y-coordinates (second column).  The corresponding effect 
on the triangle is simply a shift, leaving the area unchanged.  Thus, we may assume that the 
triangle lies in the first quadrant.  Furthermore, reduce to a configuration such as that shown in 
Figure 13.25.   Express the area of the triangle shown as the difference of the sum of the areas of 
the two trapezoids between the top two edges of the triangle and the x-axis, less the area of the 
trapezoid between the bottom edge of the triangle and the x-axis.  Compare this expression with 
the det(M).  Recall that the area of a trapezoid with base b and heights 1h , 2h equals 

1 2( / 2)( ).b h h+  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.25:  Geometric diagram for the proof in Exercise 22. 
 

 

23. To gain a deeper understanding of elements, it is often convenient to work with a so-called 
standard element, which is essentially equivalent to all elements.  For our triangular elements, 
with three nodes at the vertices, we will use the standard element T  that has vertices 1 (1,0),v =  

( , )r rx y

( , )s sx y

( ,0)sx

( , )t tx y

( ,0)tx( ,0)rx
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2 (0,1),v =  and 3 (0,0).v =   This standard element is illustrated in Figure 13.26. 
 
 
 

 
 
 
 
 
 
 
 
 
FIGURE 13.26: Illustration of the standard element for all triangular elements with three nodes 
at the vertices. 
 
 
(a) Show that the standard local basis functions (viz. (7)) for the standard element of Figure 
13.26 are given by: 

 

 1 2 3( , ) , ( , ) , and ( , ) 1 .x y x x y y x y x yφ φ φ= = = − −  
 

(b) For any triangular element T with specified vertices 1 2( , ), ( , ),r r s sv x y v x y= =  and 

3 ( , )t tv x y=  (labeled in counterclockwise order), show that the following affine mapping 

( , ) ( , )x y F x y=    (see Section 7.2) will transform the standard basis element T  onto T and map 
corresponding nodes onto one another:   
 

( ) ( ) ,
( ) ( ) ,

r t s t t
r t s t t

x x x x x x y x
y y y x y y y y
= − + − +
= − + − +

 

 

or   .r t s t t
r t s t t

x x x x xx x
y y y y y y y

− −      = +      − −      




 

 
For clarity, we have used two different sets of coordinates, ( , )x y   for the coordinates of the 

plane for T and ( , )x y  for the coordinates of the plane of .T   The action of this affine 
transformation is illustrated in Figure 13.27.   
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
FIGURE 13.27:  Illustration of the action of the affine mapping of Exercise 23(b) that takes the 
standard element T onto an arbitrary element .T  
 
(c)  Discover and then prove a relationship for the determinant of the 2 2×  matrix of the affine 
transformation of part (b) and the areas of the two elements ,T  .T    If you are not sure of the 
relationship, do some experiments using MATLAB.  For the proof, cf., Exercise 22.   
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(d)  Writing r t s t
r t s t

x x x xA y y y y
− − =  − − 

 for the matrix of the affine transformation of part (b) 

observe first that the inverse affine mapping is given by: 1 1( , ) ( , ) ,t
t

xxx y F x y A y y
− −    = = ⋅ −       

   

and show that the standard local basis elements for T are related to those (of part (a)) for T  as 
follows: 

1( , ) ( ( , )), 1,2,3.i ix y F x y iφ φ −= =  
 

Note:  Here we have used the notational convention of part (b), so that the iφ ’s are the standard 

local basis elements corresponding to ,T  while iφ  are those corresponding to .T    To prove 
this relation one simply needs to observe that both sides are linear functions of (x,y) and 
compare them on the vertices 1 2 3, , .v v v  

 
24. (Quadratic Basis Functions on Triangular Elements)  For some BVPs it is desirable to use basis 

functions jΨ  which are piecewise quadratic rather than the piecewise linear basis functions 

that were used in the text.  Thus, on each element T, such a basis function will have its general 
formula written as: 

2 2( , ) ,j x y ax bxy cy dx ey fΨ = + + + + +  

where, in order to simplify notation, we have omitted subscripts and superscripts on the six 
coefficients a, b, c, d, e, f.  Since we now have six local basis functions (for each term), we will 
need to correspondingly have six nodes on each element in order that the coefficients be 
uniquely determined.  A very natural (and as it turns out effective) way to do this is to put three 
extra nodes on the midpoints of each of the edges of the elements.  The corresponding standard 
element (see Exercise 23), is shown in Figure 13.28.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.28:  The standard triangular element with six nodes for piecewise quadratic FEM.  
The three additional nodes from the piecewise linear standard elements are placed at the 
midpoints of the segments, the numbering is as before for the vertex nodes, while the midpoint 
nodes are numbered counterclockwise in order of the opposite vertices.   
 
 
(a)  Show that (by analogy with (7)) the corresponding standard local basis functions for the 
standard element of Figure 13.26 are given by: 
 

1 1 1
2 2 2
3 3 3
4 2 3
5 1 3
6 1 2

( , ) ( , ) (2 ( , ) 1),
( , ) ( , ) (2 ( , ) 1),
( , ) ( , ) (2 ( , ) 1),
( , ) 4 ( , ) ( , ),
( , ) 4 ( , ) ( , ),
( , ) 4 ( , ) ( , ),

x y x y x y
x y x y x y
x y x y x y
x y x y x y
x y x y x y
x y x y x y

ψ φ φ
ψ φ φ
ψ φ φ
ψ φ φ
ψ φ φ
ψ φ φ

= ⋅ −
= ⋅ −
= ⋅ −
= ⋅
= ⋅
= ⋅
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where the jφ ’s  are the piecewise linear standard local basis functions of Exercise 23(a).   

(b) Do the six identities of part (a) continue to remain valid when the local basis functions 
correspond to an arbitrary element? 
(c) Show that the affine mapping ( , ) ( , )x y F x y=    of Exercise 23(b) maps the standard 
triangular element of Figure 13.28 (viewed in the -plane)xy  onto the corresponding triangular 
element with midpoint nodes (viewed in the -plane)xy  such that the node correspondence is 
maintained. 
(d)  Now letting ( , )j x yψ 1,...,6,j =  denote the standard local basis functions of part (a) and 

( , )j x yψ denote the corresponding local basis functions for an arbitrary element, prove that 
1( , ) ( ( , )), 1,...,6,i ix y F x y iψ ψ −= =  where F is the affine mapping of part (c). 

 
25. (Quadratic Basis Functions on Triangular Elements, Cont.)  Let 2 2( , )x y ax bxy cyψ = + +  

dx ey f+ + +  be a quadratic function on a triangular element T  with six nodes (vertices and 
midpoints).  Assume that ( , ) 0x yψ = on an entire line segment of T that is opposite to vertex 

jv .  Prove that ( , )x yψ  can be factored as ( , ) ( , ) ( , )jx y x y x yψ φ φ= ⋅ where ( , )j x yφ is the 

standard linear local basis function for the vertex jv and ( , )x yφ  is some other linear function 

( , ) .x y ax by cφ = + +   
Suggestion:  First prove this for the case of the standard element and j = 2, then use affine 
mapping (see Exercises 23 and 24) to translate your proof to work for a general triangular 
element.    

 
26. (Quadratic Basis Functions on Triangular Elements, Cont.)  (a) Use MATLAB to create three-

dimensional plots of each of the standard local basis functions ( 1,...,6)j jψ =  for the standard 

element of Figure 13.28.  The graphs of two of these functions are roughly depicted in Figure 
13.29. 
Suggestion:  One way to get high-resolution plots over such a triangular region is to triangulate 
it into much smaller elements and then use the trimesh.   
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.29:  Graphical illustration of two of the quadratic local basis functions for the 
standard triangular element of Figure 13.28. 
 
 

(b)  Write down a formula for the (nonlocal) basis function 4 4 ( , )x yΨ = Ψ  corresponding to the 
interior node #4 of the triangulation of Figure 13.4 using the nodal parameters given below 
Figure 13.5.  
Suggestion:  The midpoint nodes will need to be numbered.  This can be done systematically as 
in Example 13.1, but the linear systems will of course be larger.    
(c) Use MATLAB to plot the (nonlocal) basis function 4 4 ( , ).x yΨ = Ψ  
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(d) Repeat parts (b) and (c) for the midpoint node between the numbered nodes 4 and 5.   
 
27. Given any finite set { }1 2, , , np p pP = of distinct points in the plane, show that each of the 

corresponding Voronoi boxes ( )iV p is a convex set.    
Suggestion:   Observe that a Voronoi box is an intersection of half-planes.   

 
28. As mentioned in the text, when a triangulation is created for a given domain to use in the FEM, 

it is usually desirable to have the angles of each of the elements not get too small.  In this 
exercise you will be creating an M-file that will be able to perform a check for this on a given 
triangulation and locate any “problem elements.” 
(a)  Write an M-file, called theta = minangle(v1, v2, v3) whose three input 
variables v1, v2, v3 are 2 1× matrices giving the coordinates of the three vertices of a triangle 
in the xy-plane, and whose output theta is the smallest (interior) angle of this triangle, 
measured in degrees. 
(b)  Write an M-file called theta = minanglemesh(x,y,tri) whose inputs are two 
vectors x, y of the same size giving the coordinates of the nodes of a triangulation, and tri, a  
3-column matrix having as its rows the node numbers of the elements in the triangulation.  The 
output theta will be the minimum angle (measured in degrees) of any angle of any element of 
the triangulation.  Run this program on the triangulations of Figure 13.5 (with parameters given 
in the matrices N and T preceding Example 13.1), as well as each of the triangulations created in 
Example 13.2 of the unit disk.   
(c)  Write an M-file called [badelems, thetas] = minanglemesh(x,y,tri,tol) 
that, along with the input variables of part (b), has the additional input variable tol that will be 
a positive number denoting the smallest desired angle (measured in degrees) to be tolerated in a 
triangulation.  There are two output variables:  badelems, which will give the element 
numbers (corresponding to row numbers of tri) whose minimum angles are less than tol, and 
thetas, which is a vector of the same size as badelems gives the corresponding offending 
minimum angles of the bad elements.  Additonally, a graphic will be produced that will graph 
only the elements corresponding to badelmens.  This will allow for appropriate measures to 
be taken to modify the triangulation, if necessary.  Run this program on the triangulations of 
Figure 13.5 (with parameters given in the matrices N and T preceding Example 13.1), as well as 
each of the triangulations created in Example 13.2 of the unit disk, using three different values 
for tol for each: The first one chosen so that there are no offending elements, the second 
chosen so that there are a few offending elements (if possible), and the third chosen so there are 
a lot of offending elements.    

 
 
13.3:  THE FINITE ELEMENT METHOD FOR ELLIPTIC PDE’S  
 
In this section we will present versions of the FEM for solving the following 
general type of BVP on a domain 2Ω⊂   
 

1

2

(PDE) ( ) on
(BCs) on .

on

p u qu f
u g

n u ru h

−∇ ∇ + = Ω = Γ
 ∇ + = Γ







 
 

(10) 

 
The data functions: , , , , ,p q f g r h  are allowed to be functions of (x,y), defined on 
their respective indicated sets. The boundary ∂Ω is decomposed into the portions 

1Γ  and 2 ,Γ     1 2 .∂Ω = Γ ∪Γ   On the first portion 1Γ  there are Dirichlet boundary 
conditions ,u g=  and on the complementary portion 2Γ  we are assuming 
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generalized Neumann boundary or Robin boundary conditions:  
( ) .n p u ru h∇ + =


   Here ( , )n n x y=
  denotes the outward unit normal vector 

defined on the ∂Ω , and ( / , / )u u x u y∇ = ∂ ∂ ∂ ∂ is the gradient of  u(x,y).  Thus, 
from multivariable calculus, the dot product ( , )n u x y∇



  is just the partial 
derivative of u in the direction of the outward pointing normal vector ( , )n n x y=

   
at any point ( , )x y  on the boundary.  If ( , ) 0,r x y ≡  the BCs on 2Γ  generalize the 
usual Neumann boundary conditions.9  We allow for the possibility that either 

1Γ = ∂Ω  (so 2Γ =∅ ) and the boundary conditions are purely of Dirichlet form, or 
that 2Γ = ∂Ω  with boundary conditions being entirely of Robin form.  The PDE in 
(10) is written in the so-called divergence form. This is the most general form for 
linear elliptic PDEs on which the standard FEM is applicable, and indeed this is 
the most general elliptic PDE to which MATLAB’s symbolic toolbox is 
applicable.    A great many elliptic boundary value problems can be expressed in 
the form (10).   Sometimes, it will be convenient for us to write the PDE in (10) in 
expanded form: 
  

/ [ ] / [ ] onx yx pu y pu qu f−∂ ∂ − ∂ ∂ + = Ω .  
 

 

The reason for the negative signs will become clear once the FEM is introduced.  
This PDE is the natural generalization to two space variables of the ODEs that 
were considered in Section 10.5.  We begin by outlining the FEM for the BVP 
(10) in the case of purely Dirichlet boundary conditions (i.e., 2 ).Γ = ∅   The FEM 
will look quite similar to the one-dimensional version presented in Section 10.5.   
The proofs of the underlying results will not be included in this text.  They share 
many common elements with the one-dimensional theory presented in Section 
10.5, but for technical reasons, the higher dimensional analogues require some 
more advanced mathematical machinery (including, for example, some elements 
of Sobolev spaces).  The interested reader can consult one of the following 
references:  [Cia-02], [AxBa-84],  [StFi-73], or [Joh-87] for more details on the 
theory.   
 
  In cases of purely Dirichlet boundary conditions and when the data the BVP (10) 
satisfy: , ,p q f  are piecewise continuous on Ω , along with the first partial 

 
9 Let us briefly review the physical significance of the three types of BCs in the context of a steady-
state heat distribution BVP (a prototypical BVP).  The Dirichlet boundary condition u g= means that 
(on the portion of the boundary where the condition holds) the boundary is being maintained (by some 
coolant or heat reservoir) at a specified temperature.  The Neumann boundary condition 0n u∇ =



  
means that the boundary is insulated (no heat loss or transfer).  The Robin boundary condition (after 
dividing through by p , which will always be assumed positive): n u ru h∇ + =



  when written in the 

form ( )n u r u h∇ = − −




  looks like the usual Newton’s law of cooling where the net heat transfer (out of 
the region) is proportional to the difference of the inside temperature ( u ) and the outside temperature 
( h ). 
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derivatives of p and q ,  g  is piecewise continuous on ∂Ω  and 
( , ) 0, ( , ) 0p x y q x y> ≥ , the BVP can be shown to be equivalent to the 

minimization problem:   
 
Minimize the functional:   
 

2 2 21 1 1
2 2 2[ ] [ ]x yF u pu pu qu fu dxdy

Ω

= + + −∫∫ , (11) 

 

over the following set of admissible functions:   
 

{
}

: : ( ) is continuous , ( ) is piecewise continuous
 and bounded, and ( , ) ( , )on .

v v x v x
v x y g x y

′Ω →
= ∂Ω

A =
 

 
(12) 

 
The concept of piecewise continuity on Ω  (or ∂Ω ) simply means that the domain 
(or boundary) can be broken up into finitely many elements (arcs) on each of 
which the given function reduces to a continuous function.   
 
Analogous to the one-dimensional method presented in Section 10.5, the FEM will 
solve a corresponding finite-dimensional minimization problem where the 
functional F[u] of (11) is kept the same, but the set of admissible functions is 
reduced to an approximating smaller set that is determined by the basis functions 
of the triangulation.   Thus we will be looking for minimizers of the functional F 

among functions of the form 
1

,
m

i i
i

v c
=

= Φ∑  where the ( , )i i x yΦ = Φ  are the basis 

functions.  The basis functions corresponding to nodes on the boundary will have 
their coefficients determined by the Dirichlet boundary conditions; it is the 
remaining coefficients (corresponding to interior nodes) that need to be 
determined.  We now briefly outline the FEM for BVPs with purely Dirichlet BCs.  
We follow this outline with some additional details and then give examples. 
 
 
FEM FOR THE BVP (10) IN CASE OF PURELY DIRICHLET BC’S 
( 2Γ = ∅ ): 
 

Step #1:  Decompose the domain into elements, and represent the set of nodes 
and elements using matrices.  Separate the nodes iN  into the internal nodes:  

1 2, , , nN N N (that lie in Ω ), and the boundary nodes 1 2+ +, ,n nN N  
, mN (that lie on ∂Ω ).   Denote the basis function 

iNΦ corresponding to 

node iN  simply by .iΦ  
Step #2:  Use the Dirichlet BCs ( , ) ( , )u x y g x y=  on ∂Ω  to determine the 
coefficients of the boundary node basis functions of an admissible function:  

1
,

m

i i
i

v c
=

= Φ∑   i.e., ( )i ic g N=  for each 1, 2, , .i n n m= + +   
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Step #3:  Assemble the n n×  stiffness matrix A  and load vector b needed to 
determine the remaining coefficients 1 2, , , nc c c  that work to solve the 
discrete minimization problem corresponding to the BVP. 
Step #4:  Solve the stiffness equation ,Ac b=  and obtain the FEM solution 

 
1

.
m

i i
i

v c
=

= Φ∑  

 
The first step was examined in detail in the last section for triangular elements 
with piecewise linear basis functions.  Such elements and basis functions are the 
ones that will be used exclusively in the text of this section.   The exercises will 
consider some other sorts of elements and/or basis functions.  Step #2 is rather 
clear.  Step #3 will be accomplished by a so-called assembly technique where the 
entries of the stiffness matrix and load vectors are built by looking at the 
contributions of each element.   
 

If we substitute the expression 
1

m

i i
i

v c
=

= Φ∑ for u into the functional [ ]F u , and then 

differentiate with respect to kc (under the integral sign), we arrive at the following 
equation (Exercise 17): 
 

1 1 1

1

[ ( ) ( ) ( ) ( )

] .

m m m

i i i x i x k i y i y k
i i ik

m

i i k k
i

F c p c p c
c

q c f dxdy

= = =Ω

=

∂  Φ = ∂ Φ ∂ Φ + ∂ Φ ∂ Φ ∂  

+ Φ Φ − Φ

∑ ∑ ∑∫∫

∑
 

 
 
(13) 

 
Keeping in mind that the values of kc for k n>  will have been computed in Step 
#2, since we seek a critical point of F, we set the above equations equal to zero for 
1 k n≤ ≤ to obtain the following n n×  linear system for the unknown coefficients: 
 

,Ac b=  (14) 
 

where the c represents the (column) vector of the unknown (internal node) 
coefficients: 1 2[ ] .nc c c c ′=     The entries of the stiffness matrix [ ]ijA a=  are 
given by (Exercise 17): 
 

( )[ ] 1 , ,ij i j i ja p q dxdy i j n
Ω

= ∇Φ ∇Φ + Φ Φ ≤ ≤∫∫   (15) 

 
and the entries of the load vector [ ]jb b= are given by: 

( )
1

[ ] 1 .
m

j j s j s j
s n

b f dxdy p q dxdy j n
= +Ω Ω

= Φ − ∇Φ ∇Φ + Φ Φ ≤ ≤∑∫∫ ∫∫   
 

(16) 
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We point out that the coefficients sc  ( s n> ) are known from Step #2.  Note that 
from (15) (since the dot product is commutative: v w w v=

   

  ) it follows that 
,ij jia a=  i.e., the stiffness matrix is a symmetric matrix.   

 
  Keeping in mind that each of the basis functions is made up of its linear “pieces” 
on each of the elements, it is more efficient to compute the stiffness entries ija and 
load entries jb  by running through each of the elements and adding up 
contributions.  Assuming that the nodes and elements have been stored in a 2-
column matrix N and a 3-column matrix E,  respectively (as in the last section, but 
then we labeled the element matrix as T), we now outline the assembly process: 
 
 
ASSEMBLY PROCESS FOR THE FEM FOR (10) IN CASE OF PURELY 
DIRICHELT BC’S ( 2Γ = ∅ ): 
 
Step #1:  Initialize n n×  stiffness matrix A  and 1n×  load vector b with all 
zero entries. 
Step #2:  Let   run from 1 to L = the number of elements (= number of rows 
of the matrix E whose  th row gives the node numbers of the  th element 
T


).  For each index ,  we create the 3 3× element stiffness matrix [ ]A aαβ=   
( 1 , 3α β≤ ≤ ) for the element T



 and the corresponding 3 1×  element load 
vector [ ]b bα=   by restricting the integrals in formulas (15) and (16) from 
Ω to T



: 
 

( )[ ] 1 , 3 ,i i i i
T

a p q dxdy
α β α βαβ α β= ∇Φ ∇Φ + Φ Φ ≤ ≤∫∫





  (15  ) 

 

and  
 

( )
1

[ ] 1 3 .
m

i s s i s i
s nT T

b f dxdy c p q dxdy
α α αα α

= +

= Φ − ∇Φ ∇Φ + Φ Φ ≤ ≤∑∫∫ ∫∫
 



  
 

(16  ) 

 

(Here, the index iα  denotes the global node number corresponding to the 
thα vertex of ,T



 i.e., ( , ),i Eα α=   whereas the local node number α  for a 
vertex of T



 is just the corresponding column number of the index α in the 
th  row of the element matrix .)E   We then transplant these contributions 

into the appropriate places of the (global) stiffness matrix and load vector: 
 

( )( ( , ), ( , )) ( ( , ), ( , )) 1 , 3 ,A E E A E E aαβα β α β α β= + ≤ ≤

     (17) 

and 
 

( )( ( , )) ( ( , )) 1 3 .b E b E bαα α α= + ≤ ≤

   (18) 
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We point out that formulas (15  ) and (16  ) need only be carried out when the 
indices α  and/or β correspond to interior nodes.10  Also, the integrands in 
summation of (16  ) will vanish on the element T



 unless the corresponding 
exterior node (number s) is a vertex of T



. 
 
We turn now to a simple example involving the Poisson PDE and constant 
(Dirichlet) boundary conditions on the hexagonal domain of the last section with 
only eight triangular elements (Figure 13.5).   MATLAB will be able to help us 
with general multiple integrals, and we will explain how this can be done after this 
introductory example.  The integrals that will need to get done in the course of this 
example will be simple enough to do by hand, and all will be evaluated using the 
results of the following exercise for the reader: 
 
EXERCISE FOR THE READER 13.5:  Let T denote any (convex) triangle in the 
plane having vertices 1 2( , ), ( , ),r r s sv x y v x y= =  and 3 ( , )t tv x y= (Figure 13.30), 
and let 3φ φ= denote the local basis function for T corresponding to the vertex 3 ,v  
i.e., ( , )x yφ is the linear function determined by the equations 3( )i ivφ δ=  
( 1,2,3i = ).  Establish the following formulas: 
(a)  The gradient vector φ∇



 points in the direction of the altitude a  and has 
magnitude || || 1/ || || .aφ∇ =

  

(b)  1
3( , ) Area( ).

T

x y dxdy Tφ =∫∫  

 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.30:  A typical (convex) triangular element whose local basis function 3φ φ=  
is analyzed in Exercise for the Reader 13.5.   Since the element is convex, the (blue) altitude 
vector a  shown will lie inside the triangle.   
 
EXAMPLE 13.5:  Let Ω be the hexagonal domain of Figure 13.5 with eight 
nodes (as labeled) given by: #1:  (1,1), #2: (2.5,1),  #3:  (0,0),  #4:  (1,0),  #5:  

 
10 Otherwise the entries are meaningless.  Thus, technically, the element stiffness matrices A (load 
vectors b ) will not be complete 3 3(3 1)× ×  matrices in cases where the element T



 has some of its 
vertices on the boundary (in Example 13.5, this will be the case for all of the elements).   
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(2.5,0), #6:  (3.5,0), #7: (1, −1), and #8:  (2.5, −1).   Consider the following 
Poisson BVP for this domain: 
 

{(PDE) ( , ) on
(BC) 1 on

u f x y
u

− ∆ = Ω
= ∂Ω

, 

 

where the “load” ( , ),f x y  is given by:  
 

{0, if  2.5,( , ) 1, if  2.5.
xf x y x
≤=

− >
 

 

Using the triangulation of Figure 13.5 and the corresponding piecewise linear 
basis functions of the last section, apply the FEM to solve this BVP. 
 
SOLUTION:  In this problem the BC is purely Dirichlet, so we may follow the 
above procedure.   
 
  The numbering of the nodes in Figure 13.5 has one drawback in that it does not 
conform to our current notation where the interior nodes are numbered first.  We 
could redo the numbering to conform but instead will work around the numbering 
that was already set up.  The corresponding matrices N(odes) and E(lements) are 
reproduced here: 
 

1 1 1 3 4
2.5 1 1 2 4
0 0 2 4 5
1 0 2 5 6, .2.5 0 3 4 7

3.5 0 4 5 7
1 1 5 7 8

2.5 1 5 6 8

N E

   
   
   
   

= =   
   
   

−   
   −   

 

 
Keep in mind that there are m = 8 nodes here of which n = 2 are interior (nodes #4 

and #5).   Thus an admissible function (for the FEM) 
8

1
i i

i
v c

=

= Φ∑ will have all but 

two of the coefficients ( 4 5,c c ) determined by the Dirichlet boundary conditions.  
Since (in the notation of (10)) ( , ) 1,g x y =  we have that ( ) 1i ic g N= =  for 4,5i ≠ , 
and so the FEM solution will have form: 4 4 5 5

4,5
s

s
v c c

≠

= Φ + Φ + Φ∑  and the rest of 

the problem is to compute these remaining two coefficients.   
 
We are now at the assembly stage of the FEM.  Note that since (in the notation of 
(10)), 1p =  and 0,q =  and ( ) 1s sc g N= =  ( 4,5s ≠ ), equations (15  ) and (16  ) 
simplify to: 
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( )1 , 3 ,i i
T

a dxdy
α βαβ α β= ∇Φ ∇Φ ≤ ≤∫∫





  

and  

( )
4,5

1 3 ,i s i
sT T

b f dxdy dxdy
α αα α

≠

= Φ − ∇Φ ∇Φ ≤ ≤∑∫∫ ∫∫
 



  

 
respectively (we have incorporated the change needed to accommodate the node 
numbering scheme).   
 
We initialize a 2 2×  stiffness matrix A  of zeros and the corresponding 2 1× initial 
load vector b and pass now to a detailed calculation of the first iteration of the 
assembly loop:  1=  corresponding to the first element 1T  of Figure 13.5.  Figure 
13.31 shows this element and its corresponding element stiffness matrix 1.A  
 
 
 

 
FIGURE 13.31:  (a) (left) Illustration of the first element 1T  of Figure 13.5 with the global 
node numbers (from Figure 13.5) as well as the local node numbers from the matrix T.  (b) 
(right) The corresponding element stiffness matrix 1A  along with a labeling of the 
corresponding nodes.    
 
 
Of the nodes for 1,T  only node #4 ( 3α = ) is an interior node so we need only 
compute the single entry: 
 

 
1

1
33 4 4 .

T

a dxdy= ∇Φ ∇Φ∫∫   

 
From the formula obtained in Example 13.1 for 4Φ , we know that on 1T , 

4 ( , ) ,x y x yΦ = −  so that 4 (1, 1)∇Φ = − (this also follows from the preceding 
exercise for the reader), and 4 4 2∇Φ ∇Φ = .  Consequently,  
 

1 1

1
33 4 4 12 2 Area(T ) 2 (1/ 2) 1.

T T

a dxdy dxdy= ∇Φ ∇Φ = = ⋅ = ⋅ =∫∫ ∫∫  

 
Similarly, we have only to compute the single load entry: 

1 1 1
11 12 13 1

1 1 1 1
21 22 23 3
1 1 1
31 32 33 4

1 3 4

a a a N
A a a a N

a a a N

N N N

 ←
 = ← 
 ← 
↑ ↑ ↑
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1 1

1
3 4 4

1,3
.s

sT T

b f dxdy dxdy
=

= Φ − ∇Φ ∇Φ∑∫∫ ∫∫   

 
Since the load ( , )f x y vanishes throughout 1,T  only the latter two integrals need 
to be computed.  Both integrands are constants and so the integrals can be simply 
evaluated as the preceding one.  We need the gradients of 1Φ and of 3Φ  on 1.T   
Using part (a) of the preceding exercise for the reader, we compute 1 (0,1)∇Φ =  
and 3 ( 1,0)∇Φ = −  and so the corresponding dot products with 4 (1, 1)∇Φ = − are 
both 1− .  Hence, 
 

( )
1 1

1
3 1 4 3 4 1 1Area( ) Area( ) 1.

T T

b dxdy dxdy T T= − ∇Φ ∇Φ − ∇Φ ∇Φ = − − − =∫∫ ∫∫   

 
The just-computed entries 1

33 1a = , 1
3 1b =  need to be transplanted to update the 

appropriate entries of the stiffness matrix and load vector b: 
 

 
Since the local index 3α =  corresponds to the internal node 4N , the 
corresponding index for the (global) stiffness matrix and load vector is 1, and we 
update: 1

11 11 33 0 1 1,a a a= + = + =  and 1
1 1 3 0 1 1.b b b= + = + =   In summary, after the 

first iteration of the assembly process ( 1= ), our updated stiffness matrix and 
load vector are as follows: 
 

1 0 1, .0 0 0A b   = =      
 

 
The treatment for the next iteration 2=  is quite similar since the element 2T  also 
has one interior node (#4) and two boundary nodes (#1, #2).  To prepare for the 
computations, we note that 2Area( ) 3/ 4T =  and on 2T :  
 

1 2 4( 2 / 3, 1), (2 / 3, 0), (0, 1).∇Φ = − ∇Φ = ∇Φ = −  
 
We have used Exercise for the Reader 13.5.  Actually, with less work, the needed 
gradient vectors here and in all other computations of this example can be gleaned 
from the explicit formula for 4Φ obtained in Example 13.1 by comparing relevant 
triangles.   
 

41

52

Nbb Nb
← =  ← 

411 12

521 22

4 5

Na aA Na a

N N

 ←=  ← 
↑ ↑
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2 2 2
11 12 13 1

2 2 2 2
21 22 23 2
2 2 2

431 32 33

1 2 4

a a a N
A a a a N

Na a a

N N N

 ←
 = ← ←  
↑ ↑ ↑

From the second row of the element matrix E, we see that the three vertices of 2T ,  
nodes #1, #2, and #4, have local node numbers 1, 2,α =  and 3,  respectively,  so 
that the node correspondence  for the element stiffness matrix 2A is as follows: 
 
 
 
 
 
 
 
 
Since only node 4N  is internal, we need only compute the entry 2

33a  and the 
corresponding element load vector entry 2

3 ,b  and since ( , )f x y again vanishes on 

2 ,T  these computations can be carried out just as before, using the above gradients 
and area: 
 

2 2

2
33 4 4 21 Area(T ) 3/ 4,

T T

a dxdy dxdy= ∇Φ ∇Φ = = =∫∫ ∫∫  

 
( )

2 2

2
3 1 4 2 4 2Area( ) 0 3/ 4.

T T

b dxdy dxdy T= − ∇Φ ∇Φ − ∇Φ ∇Φ = − − + =∫∫ ∫∫   

 
Transplanting these results into the appropriate places in the stiffness matrix and 
load vector results in the following updates:  
 

1 3 / 4 0 7 / 4 0 1 3/ 4 7 / 4, .0 0 0 0 0 0A b+ +       = = = =              
 

 
Proceeding now to 3,=  the situation is a bit different in that the element 3T   has 
two internal nodes.  This will mean that we will need to compute a total of six 
entries (four for the element stiffness matrix 3A  and two for the corresponding 
element load vector 3 ).b   We obtain, as before, the area 3Area( ) 3 / 4,T =  and the 
gradient vectors on 3 ,T  
 

2 4 5(0, 1), ( 2 / 3, 0), (2 / 3, 1).∇Φ = ∇Φ = − ∇Φ = −  
 
From the third row of the element matrix E, we see that the three vertices of 3T :  
nodes #2, #4, and #5 have local node numbers 1, 2,α =  and 3,  respectively,  so 
that the node correspondence for the element stiffness matrix 3A is as follows: 
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The computations of the needed entries of 3A and 3b  are now done just as before.   
We briefly summarize them:  
 

3 3

3 3 3
22 4 4 23 32 4 5

4 3 4 31/ 3, 1/ 3,
9 4 9 4T T

a dxdy a a dxdy= ∇Φ ∇Φ = ⋅ = = = ∇Φ ∇Φ = − ⋅ = −∫∫ ∫∫ 

 

3 3

3 3
33 5 5 2 2 4

13 3 13/12, 0,
9 4T T

a dxdy b dxdy= ∇Φ ∇Φ = ⋅ = = − ∇Φ ∇Φ =∫∫ ∫∫   

 

and ( )
3

3
3 2 5 3Area( ) 3/ 4.

T

b dxdy T= − ∇Φ ∇Φ = − − =∫∫   

 
Transplanting these results into the appropriate places in the stiffness matrix and 
load vector results in the following updates:  
 

7 / 4 1/ 3 0 1/ 3 25 /12 1/ 3 7 / 4 0 7 / 4, .0 1/ 3 0 13/12 1/ 3 13/12 0 3/ 4 3/ 4A b+ − − +       = = = =       − + − +       
 

 
In the next iteration, 4=  and ( , )f x y  no longer vanishes on the element.  Since 

( , )f x y  is constant throughout 4T , however, we will still be able to use Exercise 
for the Reader 13.5 to evaluate the new integral that arises.  The nodes of 4T :  

2 5 6, ,N N N  have local node numbers (from the fourth row of E) 1, 2, 3α = , 
respectively.  The needed element area is 4Area( ) 1/ 2,T =  and the gradient vectors 
on 4T :  

2 5 6(0, 1), ( 1, 1), (1, 0).∇Φ = ∇Φ = − − ∇Φ =  
 
As only one of the nodes is internal, we have only two entries to compute: 
 

4 2

4
22 5 5 2 1,     and

T T

a dxdy dxdy= ∇Φ ∇Φ = =∫∫ ∫∫  

 

4 4 4

4
2 5 2 5 6 5

1
4 4 43 Area( ) ( Area( ) Area( )) 5 / 6.

T T T

b f dxdy dxdy dxdy

T T T

= Φ − ∇Φ ∇Φ − ∇Φ ∇Φ

=− − − − =

∫∫ ∫∫ ∫∫ 

 

 
(In the last calculation we use Exercise for the Reader 13.5(b).)  The updated 
stiffness matrix and load vectors now become: 

3 3 3
11 12 13 2

3 3 3 3
21 22 23 4
3 3 3

531 32 33

2 4 5

a a a N
A a a a N

Na a a

N N N

 ←
 = ← ←  
↑ ↑ ↑
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25/12 1/ 3 25/12 1/ 3 7 / 4 7 / 4,1/ 3 13/12 1 1/ 3 25/12 3/ 4 5/ 6 19 /12A b− −       = = = =       − + − +       
. 

 
Each of the remaining four iterations is done almost identically to one of the four 
that has just been done.  We summarize each remaining iteration only by the 
stiffness matrix and load vector updates: 
 

5= :   25/12 1 1/ 3 37 /12 1/ 3 7 / 4 1 11/ 4,1/ 3 25/12 1/ 3 25/12 19 /12 19 /12A b+ − − +       = = = =       − −       
 

 
6= : 

37 /12 13/12 1/ 3 1/ 3 25/ 6 2 / 3 11/ 4 3/ 4 15/ 4,1/ 3 1/ 3 25/12 1/ 3 2 / 3 29 /12 19 /12 19 /12A b+ − − − +       = = = =       − − + −       
 

 

7 :=  25/ 6 2 / 3 25/ 6 2 / 3 15/ 4 15/ 4,2 / 3 29 /12 3/ 4 2 / 3 19 / 6 19 /12 3/ 4 7 / 3A b− −       = = = =       − + − +       
 

 
and finally, 
 

8 :=  25/ 6 2 / 3 25/ 6 2 / 3 15/ 4 15/ 4, .2 / 3 19 / 6 1 2 / 3 25/ 6 7 / 3 5/ 6 19 / 6A b− −       = = = =       − + − +       
 

 
With the stiffness matrix and load vector now “assembled,” the remaining 
coefficients 4 5,c c  are simply the solutions of the linear system: 
 

4 4

5 5

25 / 6 2 / 3 15 / 4 1277/1218 .2 / 3 25 / 6 19 / 6 565/609
c cAc b c c

−         = ⇔ = ⇒ =        −        
 

 
With this small system (solved on MATLAB) exact arithmetic was feasible. The 
FEM solution 4 4 5 5v c c= Φ + Φ  can now be plotted quite easily using the 
trimesh command as in the last section.  We need to make sure we have the 
node matrix N and the element matrix E stored, and then assign the values for 

4 5,c c  to nodes #4, #5 and values of one for the remaining nodes (from the 
Dirichlet BCs): 
 
>> N=[1 1;5/2 1;0 0;1 0;5/2 0;7/2 0;1 -1;2.5 -1]; 
>> E=[1 3 4;1 2 4;2 4 5;2 5 6;3 4 7;4 5 7;5 7 8;5 6 8]; 
>> x=N(:,1); y=N(:,2); 
>> z=ones(8,1); z(4)= 1277/1218; z(5)= 565/609; 
>> trimesh(E,x,y,z) 
>> hidden off, xlabel('x-values'), ylabel('y-values') 
 
The resulting plot is shown in Figure 13.32. 
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FIGURE 13.32:  Plot of our first FEM solution to the BVP of Example 13.5.  Only 8 
elements and 2 internal nodes were used, so the plot is rather coarse.   
 
 
EXERCISE FOR THE READER 13.6:  If in the BVP of Example 13.5 we change 
the BC to 2u ≡ on ∂Ω , but leave all else the same, how would the exact solution 
of this modified problem compare with that of the original?  Perform the FEM on 
this modified problem (with the same triangulation) and compare the numerical 
solution with that of the original problem.    
 
  The resolution used in the last example was made deliberately coarse so that we 
could focus on the various facets of the FEM.  We now move on to apply the FEM 
to a problem with a much more elaborate triangulation of the domain.  The added 
complexity will force us to write some MATLAB loops to make the FEM feasible.  
The BVP we choose, the Laplace equation with Dirichlet boundary conditions on 
the unit disk, is rather special in that an explicit solution is available.  We will thus 
be able to compare our FEM solution with the exact solution.  Such examples are 
important as an aid for creating and testing production-level FEM codes.  We state 
as a theorem this beautifully explicit result due to Poisson.11 

 
11 After his secondary education, Siméon-Denis Poisson went to work as a surgeon’s apprentice with an 
uncle in Fontainbleau, a small city not far from Paris.  His lack of coordination forced him to abandon 
his pursuit of this profession and he subsequently went to the local École Central for undergraduate 
studies in search of a new career.  His mathematical ability was noticed by his instructors who 
encouraged him to take the entrance exams at the premiere École Polytechnique in Paris. Despite his 
relatively minor training, he placed at the very top and was admitted in 1798.  His talents were quickly 
noticed and further cultivated by his teachers Laplace and Lagrange.  Although his lack of manual 
dexterity precluded him from doing well in certain subjects (such as descriptive geometry), he excelled 
in subjects where drawing diagrams was not needed and at age 18 wrote a seminal memoir on finite 
differences which was well received.  After graduation from École Polytechnique he was offered a 
position there, a rare honor which he accepted.  He spent the remainder of his career there and led a 
very productive life of contributions both to mathematics and physics.  He cared deeply for 
mathematics and for maintaining the quality and sanctity of the École Polytechnique.  He was able to 
stop a group of politically active students at the École from publishing a lampooning attack on 
Napoleon’s leadership, fearing that this could do harm to the École.   He was elected to the physics 
section of the prestigious national Institute (a corresponding position in the mathematics section was 
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THEOREM 13.1:  (Poisson’s Integral Formula)  
Suppose that ( )f θ  is a continuous function 
(given in polar coordinates) on the circle 

2 2 2x y R+ = (θ  is the polar coordinate angle).   If 
Ω  is the disk inside this circle, Ω =  
{ }2

2
( , ) : ,p x y p R= ∈ <  then the solution of 

the Dirichlet problem: 
 

    {(PDE) 0 on
(BC) ( , ) ( ) on

u
u R gθ θ

∆ = Ω
= ∂Ω

           (19)  

 
is unique and is given by: 
 

22 2

2 2
0

( )( , )
2 2 cos( )

R r g du r
R Rr r

π φ φθ
π θ φ
−

=
− − +∫   (20) 

 
Here, ( , )r θ  denotes the polar coordinates of any point inside ,Ω  ( ).r R<    
 
  We omit the proof of this result (an enlightening one can be found in Section 4.6 
in the textbook [Ahl-79]).  The result and proof actually extends to higher 
dimensions; see Section 7.5 in [Zau-89] for the three-dimensional analogue. It 
turns out as well that the result remains valid for more general boundary data 

( )f θ .  For example, if ( )f θ  is only piecewise continuous, then (20) will still 
solve the Dirichlet problem (19), and the solution will be continuous at all points 
on Ω∪∂Ω =   { }2

2
( , ) :p x y p R= ∈ ≤ except at those points on the boundary 

at which ( )f θ  is discontinuous (see again Section 4.6 in the textbook [Ahl-79]).  
This beautiful formula is one very rare instance where a general BVP has an 
explicit and practical solution.  Recall that solutions of the Laplace PDE in (19) 
are called harmonic functions (Chapter 11).  The BVP (19) can be viewed, for 
example, as finding the steady-state heat distribution of a circular plate whose 
temperature on the boundary is maintained with a certain known distribution 
( ( )f θ ). 
 

 
not available; due to the limit set on membership a death of a member had to occur for a new slot to 
open).   His name permeates many areas of mathematics and physics, which apart from differential 
equations ( Poisson bracket and integral formulas), include probability (Poisson distribution), harmonic 
analysis (Poisson summation formula), and elasticity (Poisson’s ratio).  During his career he wrote over 
300 research papers, but he was known never to work on more than one project at a time.  He was 
extremely methodical and well-organized; if an idea for a new project would cross his mind while 
working on one paper he would write a brief note about it and place it in his wallet.  After finishing one 
paper, he would then pull out all of the notes from his wallet to decide on the best topic for his next 
project.   

 
Figure 13.33:  Siméon-Denis 
Poisson (1781−1840), French 
mathematician. 
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  We will be able to use (20) to get MATLAB to run through a sufficiently fine set 
of nodes in the disk to obtain a plot of the exact solution.  The nodes could be 
chosen to be those used in a FEM approximation so that the errors of the FEM 
solution could be examined.  All of this will be done in Example 13.7.12    
 
  Example 13.5 was intentionally set up so as to avoid the problem of having to 
numerically integrate functions of two variables.  In more general examples, we 
will need to show how to deal with such integrals.  MATLAB has an integrator to 
perform double integrals in floating point arithmetic.  Such integrals can be time 
consuming depending on the oscillatory behavior of the integrand.  Triangulations 
can be made finer in parts of the domain where the data functions have larger 
variations, and thus the integrals become less difficult to evaluate numerically.   In 
practice, however, rather than using general integration programs or symbolic 
integrators, well-known quadrature approximations are employed.   Such 
approximation schemes take advantage of the special structure of elements to 
approximate an integral over an element by a certain weighted average among 
certain special points of the element.  We will present both approaches below.   
The first method will be to use MATLAB’s numerical integrator.  To facilitate 
general codes, we will appeal to some of the Symbolic Toolbox capabilities.  The 
second method will utilize special quadrature formulas.  The performance 
accuracy and times of both approaches will be compared and contrasted with an 
example where the exact solution can be obtained (and in which the FEM integrals 
will be quite simple).   After presenting both methods, we will discuss some of the 
underlying theory.  Particular readers may wish to cover only one method.  
Readers who do not have access to or wish to avoid using the Symbolic Toolbox 
may wish either to skip Method 1, or to be prepared to recode those parts of it 
which appeal to symbolic functionality.  In our numerical example (as we will see 
below), Method 2 ran about 200 times faster than Method 1 and gave the same 
quality of results.  Such results are typical and this is why we recommend Method 

 
12 As an aside, we point out here some related facts.  A celebrated result in the theory of complex 
variables (which can be found in [Ahl-79], the classic treatise on the subject) known as the Riemann 
mapping theorem, states that any simply connected planar domain 2D

≠
⊂  can be mapped conformally 

onto the unit disk { }2
2

( , ) : 1 .U p x y p= = ∈ <    Simply connected means roughly that the domain 

has no holes inside, i.e., if γ is any closed path in the domain, then the interior of γ contains only 
points in the domain; see [Ahl-79] for more details.  A conformal mapping is a one-to-one function (of 
two variables) F such that F(D) = U.  Conformal mappings have the property that they preserve angles 
and have many beautiful properties (see [Ahl-79]).  One particularly useful property of conformal 
mappings is that they preserve harmonic mappings, i.e., if ( , )u x y is a harmonic function on the domain 
U and :F D U→ is a conformal mapping, then ( ( , ))v u F x y=  is a harmonic function on D.  This 
result means that for any simply connected domain in the plane, there is a corresponding Poisson 
integral formula for solutions of the Dirichlet problem gotten by changing variables to the disk. This is 
quite a satisfying and complete result, theoretically, at least.  The practical problem for a given simply 
connected domain thus reduces to computing explicity a function which conformally maps it to the disk 
U.  This problem has been extensively studied and there are many situations where the mappings have 
been found.  This approach has led to numerous applications to physical BVPs involving the Laplace 
equation, including also steady-state fluid flow, and electrostatics.  See [BrChSi-03] for more on 
conformal mapping with an emphasis on applications.   
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2.  We include Method 1 only for comparison purposes; for readers interested in 
practical codes, it may be skipped altogether.   
 
 

NUMERICAL APPROXIMATION TO DOUBLE INTEGRALS 
METHOD 1:  USING MATLAB’s NUMERICAL INTEGRATOR dblquad: 
 
MATLAB’s numerical integrator for double integrals has a syntax that requires the 
integration to be performed over a rectangle.  We explain its functionality below 
and then show how it can be adapted to perform integrations over more general 
regions.   
 

 
 
 
 
dblquad(fun,xmin,xmax,
ymin,ymax) 

Assume that fun is an inline function of x and y.13  This 
command will numerically compute the integral  

y maxx max

x min y min
fun( , ) ,x y dydx∫ ∫  

using a double iteration with the single variable function 
integrator quad and with a default tolerance for error 
being 1e-6.  As with quad, the syntax of dblquad 
requires that we make the integrand fun(x,y) able to 
input a vector argument for (the first variable) x and return 
a vector of the same size.  

 
dblquad(fun,xmin,xmax,
ymin,ymax,   
tol,@quadl,p1,p2,...)  
 

Optional extra inputs:  tol allows specification of an error 
tolerance, @quadl specifies that the more refined quadl 
integrator be used in the iterations, the last inputs p1, p2, 
… represent numerical values to assign in case fun 
depends on additional parameters:  fun = 
fun(x,y,p1,p2,…).   

 
The following simple example will illustrate the syntax requirement on fun: 
 
  To evaluate the integral of 2 2x y over the rectangle [0,2] [1,2]R = × : 

  
2 2

2 2 2 2

0 1

,
R

x y dxdy x y dydx=∫ ∫ ∫  

we could simply enter: 
 
>> dblquad(inline('x.^2.*y.^2','x', 'y'), 0, 2, 1, 2)  ans = 6.2222 
 
The vector syntax requirement on the first variable x is automatically satisfied 
since this variable appears in the single term for the integrand.  If, however, we 
wanted (for testing purposes) to compute the area of the rectangle ,R  the 
corresponding command: 
 
>> dblquad(inline('1','x', 'y'), 0, 2, 1, 2) 
 

 
13 As usual, if instead “fun” has been stored as an M-file, it should be written with single quotes:  
dblquad('fun',...) or preceded with the “@” symbol:  dblquad(@fun,...). 
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gives a series of error messages:  
??? Index exceeds matrix dimensions. 
 
Error in ==> C:\MATLAB6p5\toolbox\matlab\funfun\quad.m 
On line 67  ==> if ~isfinite(y(7)) 
(more…)  
 
The syntax can be adjusted accordingly as follows: 
 
>> dblquad(inline('1*ones(size(x))','x', 'y'), 0, 2, 1, 2) 
ans = 2 
 
which (as we know) gives the correct answer.   A similar syntax note was pointed 
out in Chapter 3 for quad.   
 
  In order to use dblquad to integrate over regions other than rectangles the 
following identity will be useful: 
 

ytop( )xmax

xmin ylow( )
xmax 1

xmin 0

fun( , ) fun( , )

fun( , ylow( ) (ytop( ) ylow( )))[ytop( ) ylow( )] ,

x

T x

x y dxdy x y dydx

x x u x x x x dudx

≡

= + − −

∫ ∫ ∫

∫ ∫
 

 
 
(21) 

 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.34:  Illustration of a typical planar region on which integrals can be computed 
using (21).   
 
 
Here, the region T need not be a triangle, but rather any region in the plane 
bounded below by the curve ylow( )x and above by the curve ytop( )x and over the 
range [xmin, xmax]; see Figure 13.34. 
 
The identity (21) is easily established by a simple variable substitution; see 
Exercise 20.   Using this identity, we may use dblquad to compute any double 
integral. Since all of our integrals in the text proper of this section will be over 
triangles, the next example will present some more or less typical evaluations of  
double integrals over triangles. 
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EXAMPLE 13.6:  Let the triangle T of Figure 13.30 have the following vertices:  
1 2(1,3), (5,1),v v= = and 3 (4,6)v = .   Use MATLAB’s dblquad to numerically 

compute the following integrals: 
 

(a)  22
T

xy dxdy∫  

(b)  sin( )
T

xy y dxdy∫  

 

In each, decrease the tolerance or change to quadl, as needed, until the answers 
agree to four decimals.   
 
SOLUTION:   We need first to express the integrals as double integrals.  Letting x 
be the outer integration variable, the x-range of T  is 1 5.x≤ ≤   Over this range, 
the lower function ylow of x will be the line segment from 1v  to 2v  (see Figure 
13.30).  Writing this line segment as a function of x yields: 71

2 2ylow( ) .x x= − +    
The corresponding upper function ytop of x splits up into two formulas 
determined by the two segments 1v 3v   and 3v 2 .v   Writing each of these segments 
as a function of x yields the following formula for ytop:   

{ 2,      if 4ytop( ) .5 26, if 4
x xx x x
+ ≤=

− + >
   

Part (a):  Using the above functions, we can rewrite the integral in the following 
iterated form:   

ytop( )5 4 2 5 26 5
2 2 2 2

1 ylow( ) 1 ylow( ) 4 ylow( )

2 2 2 2 .
x x x

T x x x

xy dxdy xy dydx xy dydx xy dydx
+ −

= = +∫ ∫ ∫ ∫ ∫ ∫ ∫  

The latter form is a more convenient one to implement on MATLAB.  The code 
given below is written in a way that will make it easy to adapt to handle the 
general computation of such integrals and to this end it is more convenient to use 
some Symbolic Toolbox capabilities.  
 
>> syms x y u 
>> ylow = -.5*x+3.5; ytop1=x+2; ytop2=-5*x+26; 
>> fun=2*x*y^2; 
>> ynew1=ylow+u*(ytop1-ylow); 
>> funprep1=subs(fun,y,ynew1)*(ytop1-ylow); 
>> ynew2=ylow+u*(ytop2-ylow); 
>> funprep2=subs(fun,y,ynew2)*(ytop2-ylow); 
>> funnew1=vectorize(inline([char(funprep1),'*ones(size(u))'],... 
                                          'u','x')); 
>> %we needed to convert the symbolic expression back into a  
>> %character string for construction of an inline function. 
>> funnew2=vectorize(inline([char(funprep2),'*ones(size(u))'],... 
                                          'u','x')); 
>> dblquad(funnew1,0,1,1,4)+ dblquad(funnew2,0,1,4,5)ans = 724.8000 
 
Using a smaller tolerance (than the default 610− ) gives the same result: 
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>> dblquad(funnew1,0,1,1,4,1e-7)+ dblquad(funnew2,0,1,4,5,1e-7) 
ans =724.8000 
 
Part (b)  Implementing the same strategy, we obtain: 
 
>> fun=sin(sin(x)*y); 
>> funprep1=subs(fun,y,ynew1)*(ytop1-ylow); 
>> funprep2=subs(fun,y,ynew2)*(ytop2-ylow); 
>> 
funnew1=vectorize(inline([char(funprep1),'*ones(size(u))'],'u','x')) 
>> 
funnew2=vectorize(inline([char(funprep2),'*ones(size(u))'],'u','x')) 
>> dblquad(funnew1,0,1,1,4)+ dblquad(funnew2,0,1,4,5) 
 ans = 0.1397 
 
There is agreement when we reduce the tolerance as above.     
 
  The numerical integration(s) of part (b), unlike that in part (a), took a noticeable 
amount of time.  This is due to the fact that the integrand in part (b) is very 
oscillatory over the domain.   In general, double integrals can take a lot of work to 
evaluate effectively since, if the integrals cannot be done explicitly, any method 
basically has to iterate evaluations of a one-variable integral on numerous slices 
(the number goes up when more accuracy is desired).  When performing the FEM 
to solve a given BVP, the triangulation can and should be done so as to use smaller 
elements in areas of high oscillation of the given data.  This will assure that the 
integrals that arise in the assembly process will be numerically quite tame and easy 
to compute.  MATLAB’s symbolic integrator int can also be used to evaluate 
double integrals, and although the syntax is a bit simpler than for dblquad, the 
M-files we introduce below will help to make dblquad more convenient to use.  
Also, the extra computing time needed for int to attempt to find exact 
antiderivatives, which is usually not possible in general, is not worth the 
occasional extra precision in the answers.    
 
  To save on having to go through the above complicated syntax each time a 
numerical integral is encountered, we give here an M-file that is essentially a user-
friendly version of dblquad.  It is a simple modification of the code employed in 
the last example. 
 
PROGRAM 13.1:  User-friendly M-file for numerically computing double integrals over 
planar regions bounded between two functions of x, as in Figure 13.34.   Integrand fun is 
entered as a function of the symbolic variables x and y.   
 

function nint= quad2d(fun,xmin,xmax,ylow,ytop) 
% numerically computes a double integral of a function 'fun' on a  
% region over the interval minx<x<maxx and between the functions of  
% x: ylow<y<ytop. 
% INPUTS:  fun = a function of the symbolic variables x and y 
% minx = minimum x-value for region 
% maxx = maximum x-value for region 
% ylow = function of symbolic variable for lower boundary of region 
% ytop = function of symbolic variable for upper boundary of region 
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% OUTPUT:  nint = numerical approximation of integral using the  
% integrator 'dblquad' in conjunction with the default settings.   
% x and y should be declared symbolic variables before this M-file is  
% used. 
syms u x y 
ynew=ylow+u*(ytop-ylow); 
funprep=subs(fun,y,ynew)*(ytop-ylow); 
funnew=vectorize(inline([char(funprep),'*ones(size(u))'],'u','x')); 
nint = dblquad(funnew,0,1,xmin,xmax); 
 
EXERCISE FOR THE READER 13.7:  Use the above program to numerically 
compute the following double integrals: 
(a)  2 ,

S

xy dxdy∫  where S is the circular sector {( , ) : 0 1,0 / 4}.r rθ θ π≤ ≤ ≤ ≤  

(b) 2 2exp(1 2 ) ,
U

x y dxdy− −∫   where U is the region enclosed between the curves 

,xy e=  2 1y x= −  and 0.y =  
 
EXERCISE FOR THE READER 13.8: (a) Write an M-file, integ= 
triangquad2d (fun,v1,v1,v3) whose inputs are a function of x,y 
(written as a symbolic expression), and three 2 1×  matrices v1, v2, v3 which are 
vertices (in any order) of  triangle in the xy-plane.  If we denote this triangle by T , 
the output integ will be the numerical integral fun( , ) ,

T

x y dxdy∫  computed with 

quad2d as in Example 13.6.   
(b)  Use your function in Part (a) to reevaluate the integrals of Example 13.6, and 
also to compute the following integrals in which 1T  is the triangle with vertices 
(0,0), (6,0), (12,2), and 2T  is the triangle with vertices (1,3), (3,2), and (2,5). 

(i) 
1

1 6,
T

dxdy =∫     (ii) 
2

1 5 / 2,
T

dxdy =∫    (iii) 
1

22 504,
T

x dxdy =∫  and 

(iv)
2

2sin( ) 0.2998
T

x dxdy ≈ −∫  

Suggestions:   Branch your program off into two cases:  Either the triangle has a 
vertical side or the three x-coordinates of the vertices are distinct.  Draw lots of 
pictures of triangles as you are proceeding.   
 
EXAMPLE 13.7:  Consider the Dirichlet problem (19) on the unit disk 

2 2{( , ) : 1},x y x yΩ = + <  

{(PDE) 0 on
(BC) (1, ) ( ) on

u
u gθ θ

∆ = Ω
= ∂Ω

, 

 

(we put R = 1 in (19)), where  
22 , if 0 2

( ) 8, if 2 3 .
0, if 3 2

g
θ θ

θ θ
θ π

 ≤ ≤
= < ≤
 < ≤
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(a)  Use the FEM with a triangulation of the disk involving between 50 and 100 
nodes deployed on circles of increasing radii but more or less uniformly (as in 
Method 2 of the solution to Example 13.2(a) of the last section) to solve this BVP 
and plot the FEM solution. 
(b)  Use the Poisson integral formula (20) to numerically compute the exact 
solution at each of the nodes in part (a), and plot it.  Compare with the plot 
obtained in part (a), and compute the maximum error (at the interior nodes). 
(c) Repeat both parts (a) and (b), this time using between 500 and 1000 nodes.  
 
SOLUTION:  Part (a):  The triangulation can be done in exactly the same fashion 
as was done in Method 2 of part (a) of the solution of Example 13.2 (simply 
change the value of  delta=sqrt(pi/90);  everything else is the same).   The 
code is thus omitted here; the nodes were stored in vectors x and y and the 
triangulation in the matrix tri.  The triangulation is shown in Figure 13.35. 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.35:  Triangulation for the FEM solution of Example 13.7(a).  There are 99 
nodes and 163 triangular elements.   
 
 
By the way in which the nodes were created, the numbering scheme conforms to 
that of the procedure outline (the boundary nodes are indexed last).  In the notation 
of the procedure, 99m = (= total number of nodes), as seen by entering size(x).    
We can use a simple MATLAB loop to compute n (= number of interior nodes): 
 
>> n=1; 
>> while x(n)^2+y(n)^2<1-eps       n=n+1; 
end 
>> n=n-1 n = 66    
 
(Note:  We used eps (= machine epsilon) to safeguard the inequality from 
roundoff errors.)   Thus there are 66n = interior nodes.   
 
  We now use the boundary data to assign the corresponding coefficients ic ( i n> ) 

of the basis functions for thefor the FEM solution 
1

.
m

i i
i

v c
=

= Φ∑    To facilitate this, 
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we will create an M-file for the boundary data function ( ).g θ   Since the function 
will eventually need to be integrated (in part (b) when we use the Poisson integral 
formula), and the function is defined by cases, we will implement the special 
vector construction for this M-file that was explained in Chapter 4: 
 
function y = EX13_7_bdydata(x) 
for i = 1:length(x) 
if (0<=x(i))&(x(i)<=2) 
     y(i)=2*x(i)^2; 
elseif (2<x(i))&(x(i)<=3) 
     y(i)=8; 
else 
     y(i)=0; 
end 
end 
 

Now, since the boundary data function is a function of the angle ,θ  and the nodes 
are stored as ordered pairs of xy-coordinates, in order to use this function to assign 
the node coefficients, we must compute and input the corresponding angles for 
each node.   MATLAB has the following built-in functions for such coordinate 
changes: 
 

 
 
[th,r]=cart2pol(x,y) 

If (x,y) denote the cartesian coordinates of a point in the 
plane, the output [th,r] will be the corresponding polar 
coordinates, where the angle th is chosen in the interval 
( , ]π π− , and the radius r is nonnegative.   

[x,y]=pol2cart(r,th) Inputs a set of polar coordinates (r,th) and outputs the 
corresponding cartesian coordinates.  

 
The following loop will now store the boundary node coefficients: 
 
for i=67:99 
  th=cart2pol(x(i),y(i)); 
  if th<0, th=th+2*pi; end 
  %need to ensure th is in domain of boundary data function 
  c(i)=EX13_7_bdydata(th); 
end 
 

We are now ready to move on to the assembly process.  We first observe that 
since (in the notation of (10)), 0, 0q f≡ ≡  and 1,p ≡  equations (15  ) and (16  ) 
simplify to: 
 

( )1 , 3 ,i i
T

a dxdy
α βαβ α β= ∇Φ ∇Φ ≤ ≤∫∫





  

and  

( )
1

1 3 ,
m

s s i
s n T

b c dxdy
αα α

= +

= − ∇Φ ∇Φ ≤ ≤∑ ∫∫




  

 
respectively.  Also, of the 33 possible indices s in the bα

  formulas, only those (at 
most two) corresponding to boundary nodes of the element T



 need to be 
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considered.   Since each gradient appearing in the above integrals is of a linear 
function on an element, the integrands are all constants, and so the corresponding 
integrals will be simply the constant times the area of the underlying element.  We 
will use the M-file of Exercise for the Reader 13.8 to evaluate each of these 
integrals (within a loop).   
 
  We will make use of MATLAB’s setdiff built-in function, which was 
introduced in the last section, but with an optional second output variable.  
 

 
[d,ind] = setdiff(a,b)   

The first output variable was explained in the last 
section. The optional second output variable will be the 
indices of a which produce the vector d. 

 
Here is a brief usage example:   
 
>> a = [1 2 3]; b = [2 4]; 
>> d = setdiff(a,b)       d = 1     3 
>> [d,ind] = setdiff(a,b);  ind  ind =  1     3 
>> a = [3 2 1]; 
>> [d,ind] = setdiff(a,b)  d =  1     3,    ind = 3     1   
 
As usual, we first initialize the n n×  (n = 66) stiffness matrix A  of zeros and the 
corresponding 1n× initial load vector b and create a program that will completely 
perform the assembly. Here is the complete code for the assembly process for 
Example 13.7.   
 
>> N=[x' y']; 
>> E=tri; 
>> n=66; m=99; syms x y 
>> A=zeros(n); b=zeros(n,1); 
>> [L cL]=size(E); 
>> for ell=1:L 
  nodes=E(ell,:); 
  intnodes=nodes(find(nodes<=n)); 
  bdynodes=nodes(find(nodes>n)); 
  %find gradients [a b] of local basis functions 
  % ax + by +c; distinguish between int node  
  %local basis functions and bdy node local basis  
  %functions 
 
  for i=1:length(intnodes) 
   xyt=N(intnodes(i),:); %main node for local basis function 
   onodes=setdiff(nodes,intnodes(i)); 
   %two other nodes (w/ zero values) for local basis function 
   xyr=N(onodes(1),:); 
   xys=N(onodes(2),:); 
   M=[xyr 1;xys 1;xyt 1]; %matrix M of (4) 
   abccoeff=[xyr(2)-xys(2); xys(1)-xyr(1); xyr(1)*xys(2)-... 
   xys(1)*xyr(2)]/det(M);%coefficents of basis function on triangle#L 
   %See formula (6a)  
   intgrad(i,:)=abccoeff(1:2)'; 
  end 
 
  for j=1:length(bdynodes) 
   xyt=N(bdynodes(j),:); %main node for local basis function 
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   onodes=setdiff(nodes,bdynodes(j));%two other nodes  
   % (w/ zero values) for local basis   function 
   xyr=N(onodes(1),:); 
   xys=N(onodes(2),:); 
   M=[xyr 1;xys 1;xyt 1]; %matrix M of (4) 
   abccoeff=[xyr(2)-xys(2); xys(1)-xyr(1); xyr(1)*xys(2)-... 
   xys(1)*xyr(2)]/det(M); %coefficents of basis function on 
triangle#L 
   bdygrad(j,:)=abccoeff(1:2)'; 
  end 
 
  %update stiffness matrix 
  for i1=1:length(intnodes) 
  for i2=1:length(intnodes) 
   fun = sym(intgrad(i1,:)*intgrad(i2,:)'); %integrand for (15ell) 
   integ=triangquad2d(fun,xyt,xyr,xys); 
   A(intnodes(i1),intnodes(i2))=A(intnodes(i1),intnodes(i2))+integ; 
  end 
  end 
 
  %update load vector 
  for i=1:length(intnodes) 
  for j=1:length(bdynodes) 
   fun = sym(intgrad(i,:)*bdygrad(j,:)'); %integrand for part of 
(16ell) 
   integ=triangquad2d(fun,xyt,xyr,xys); 
   b(intnodes(i))=b(intnodes(i))-c(bdynodes(j))*integ; 
  end 
  end 
end 
sol=A\b; 
c(1:n)=sol'; 
 
The result is now easily plotted using the trimesh function of the last section: 
 
>> x=N(:,1); y=N(:,2); 
>> trimesh(E,x,y,c), xlabel('x-values'), ylabel('y-values') 
>> hidden off 
 
The resulting plot is shown in Figure 13.36. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.36:  Plot of the FEM solution of the Dirichlet problem of Example 13.7.   
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Part (b):  The following simple loop will implement the Poisson integral formula 
(20) to determine the value of the exact solution at each of the interior nodes 

ic ( i n≤ ).  As has been the convention thus far, we continue to use MATLAB’s 
numerical integrators for one-dimensional integrals; in this case we use quadl.  
We will leave the already assigned values at the boundary nodes ic ( i n> ).  We 
first create and store an M-file for the integrand in the Poisson integral formula 
(20) using the boundary data of the current example.  Since this function will be 
integrated (with quadl) we will need to construct it as shown in Chapter 4 so that 
it will appropriately handle vector inputs. 
 
function y = EX13_7_poisson(phi,r,th) 
for i = 1:length(phi) 
if (0<=phi(i))&(phi(i)<=2) 
     y(i)=2*phi(i)^2*(1-r^2)/2/pi/(1-2*r*cos(th-phi(i))+r^2); 
elseif (2< phi(i))&( phi(i)<=3) 
     y(i)=8*(1-r^2)/2/pi/(1-2*r*cos(th-phi(i))+r^2); 
else 
     y(i)=0; 
end 
end 
 
>> cp=c; %initialize node values for Poisson integral method. 
>> for i=1:n 
[th, r]=cart2pol(N(i,1),N(i,2)); %polar coors for node #i 
cp(i)= quadl(@EX13_7_poisson,0,3,[],[],r,th); 
%since integrand vanishes on (3, 2*pi] we can reduce the interval of  
%integration.  
end 
 
The plot of the exact solution just obtained14 will be quite similar to that of our 
FEM approximation in Figure 13.36.  The resulting error plot is now easily 
obtained by the following commands, and the plot is shown in Figure 13.37. 
 
>> trimesh(E,x,y,abs(c-cp)) 
>> hidden off 
>> xlabel('x-values'), ylabel('y-values') 
 

Part (c):  The code in parts (a) and (b) is written in a way so that just one small 
change in one line of the code is required to do part (c).  In the creation of the 
nodes (as in Method 2 of in the solution of Example 13.2(a)) we only need to 
change the paratmer δ  to / 900.π    The resulting node set contains m = 897 
nodes of which the first n = 791 are interior nodes, and the Delaunay triangulation 
contains 1686 elements.  The main loop took close to an hour on the author’s 
computer.  See Figure 13.38 for plots of the FEM solution and error.   
 

 
14 Of course, the Poisson integral formula, as mentioned, is exact.  The only errors will be the errors 
that arise from the numerical integration.  By default, the accuracy goal will have error < 1e-6, and the 
integrand is well-behaved so such errors will not be relevant for our present comparison purposes.  In 
case they do become relevant (with a much finer mesh, say), we could always set a new accuracy goal 
for quadl.  
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FIGURE 13.37:  Plot of the error of the FEM solution of Example 13.7, obtained by 
comparing it to the exact solution over the same grid from the Poisson integral formula.15 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.38:  (a) (left) Plot of the FEM solution of the Dirichlet problem of Example 
13.7(b).  There are 897 nodes and 1686 triangular elements.  (b) (right) Plot of the 
corresponding error.  Notice that in the solution there is one distinguished element (near 
( , ) (cos(3),sin(3))x y = ) whose z range stretches all the way from 0 to the maximum 
value of 8.  This is inevitable since the boundary data has a jump discontinuity from z = 8 to 
z = 0 at ( , ) (cos(3),sin(3)).x y =   The error, although quite small over most of the domain, 

has a distinguished spike near ( , ) (cos(3),sin(3)).x y =  
 
 
  Looking at the errors of the last two solutions, we would be led to conjecture that 
better FEM solutions could be obtained (for the same numbers of nodes) if we 
were to concentrate more nodes near the boundary point ( , ) (cos(3),sin(3))x y = at 
which there is a jump discontinuity.  The next exercise for the reader will explore 
this.   This example also motivates the concept of adaptive methods for FEM.  One 
scheme for such a method begins with a more or less uniform node distribution 

 
15 More preciselely, this plot is the difference between the FEM solution and the piecewise linear 
interpolant of the exact solution.   
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(and triangulation) and computes the corresponding FEM solution of a BVP.  For 
each element, the z-stretch (the difference of maximum and minimum z-values of 
FEM solution over just the element) is recorded and those for which this stretch is 
in, say the largest 10% or exceeds a certain numerical value (this can be adjusted) 
are flagged.  In the vicinity of such elements, extra nodes are added and a new 
mesh is created.  This is iterated a certain number of times (which can be adjusted) 
or until the maximum z-streches fall below a certain prescribed value (which also 
can be adjusted).  Such an adaptive scheme will be addressed in the exercises of 
this section.     
 
EXERCISE FOR THE READER 13.9:  Use the FEM with a triangulation of the 
disk involving roughly 100 nodes deployed in a way so that more nodes are used 
near ( , ) (cos(3),sin(3))x y =  to solve the BVP Example 13.7.  Can you triangulate 
in such a way that the maximum error is smaller than that obtained in the solution 
of part (b) of Example 13.7 (when 897 nodes were used)?   Plot the error (as 
computed above using the Poisson integral formula).   
Suggestion:  Try several different schemes with the main goal being to minimize 
the maximum total error (i.e., the z-height of the error graph).  The node sets are 
small enough so that CPU time will not hinder multiple experiments.   
 

 

NUMERICAL APPROXIMATION TO DOUBLE INTEGRALS 
METHOD 2:  APPROXIMATION QUADRATURE FORMULAS 
(RECOMMENDED):   
 
Suppose that T is a region in the plane.  A so-called Gauss quadrature formula 
for approximation of general integrals over T takes the form: 
 

1 1 2 2( , ) ( ) ( ) ( ),n n
T

f x y dxdy w f w f w fξ ξ ξ≈ + + +∫   (22) 

 
where the weights 1 2, , , nw w w are specified real numbers and the sampling 
points 1 1 1( , ),x yξ = 2 2 2( , ),x yξ =  1 1 1 2 2 2( , ), ( , ), , ( , )n n nx y x y x yξ ξ ξ= = =  are 
specified points in T.  In general, these formulas are developed with the goal that 
they be exact for polynomials (in two variables) up to a specified degree.  If such a 
formula was exact for polynomials of degree up to p, Taylor’s theorem in two 
variables could then be used to show that if the integrand has continuous partial 
derivatives up to order p + 1 then the error of the approximation (22) is 1( ),pO h +  
where h is the diameter of T (Exercise 28).   For each sampling point there are 
three degrees of freedom (the weight, and the coordinates of the sampling point).  
For example, when T is a triangle with vertices 1 2,V V , and 3V  it can be shown 
(Exercise 29) that the following formula is exact for any polynomial of degree at 
most one: 
 

{ }1 2 3
Area( )( , ) ( ) ( ) ( ) .

3T

Tf x y dxdy f V f V f V≈ + +∫  (23) 
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This may be interpreted as a two-dimensional generalization of the trapezoidal 
rule.  With the same number of sample points we can do better:  If we choose them 
to be the midpoints of the edges of the triangle, rather than the vertices, we arrive 
at the following formula that turns out to be exact for polynomials of degree at 
most 2: 
 

{ }1 2 1 3 2 3
Area( )( , ) ([ ]/ 2) ([ ]/ 2) ([ ]/ 2)

3T

Tf x y dxdy f V V f V V f V V≈ + + + + +∫ . (24) 

 
For a brief but enlightening introduction on how such formulas are derived, see 
Section 5.2 of [ZiMo-83].  More details can be found in the article [Cow-73]; see 
also [Kry-62].   
 
EXERCISE FOR THE READER 13.10:  (a) Write an M-file for the Gaussian 
quadrature formula (24) having the following syntax: 

int = gaussianintapprox(f, V1, V2, V3) 

The input variables are:  f,  an inline function or an M-file,  and V1, V2, and V3, 
the vertices of a triangle in the plane (listed as row vectors of length two). The 
output int is a number corresponding to the integral approximation of (24).   
(b)  Run through the MATLAB codes of part (c) of Example 13.7 on your own 
computer, and take note of the time it takes for the main finite element part of the 
code (after the triangulation).  Then rewrite this part of the code to use the M-file 
of part (a) of this exercise in place of dblquad, and compare the resulting error 
and runtime.  
 
Example 13.7 gives a nice demonstration of how refinements of the mesh will 
reduce the errors of the FEM approximations of the actual solution.  In general, if 
the data for the BVP (10) satisfy: , , andp q f  are piecewise continuous on Ω , the 
first partial derivatives of p  ,q  and g  are piecewise continuous on 1,Γ   r  and 
h  are piecewise continuous on 2Γ  and 0( , ) 0, ( , ) 0,p x y p q x y≥ > ≥  then it can 
be shown that with the above FEM scheme (as well as the one below for more 
general boundary conditions), the error of the FEM approximation is of order ,δ  
where δ  is the maximum diameter of any of the (triangular) elements.  This result 
can be roughly expressed by the following inequality: 
 

ˆ .u u Cδ− ≤  (25) 

 
Here u represents the exact solution of the BVP, û  is the FEM solution 
(corresponding to a triangular mesh with h defined as above), and C is a constant 
that depends on the problem but not on .δ   The norm on the left can be any of 
several norms to measure the errors.  The order of the errors can be upgraded from 
δ  to higher powers of δ  by using basis functions that are locally polynomial of 
higher degree (some examples of such elements were given in the exercises of the 
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previous section). To give more specific results would require a deeper theoretical 
discussion involving some functional analysis.  We refer the interested reader to 
Chapter 4 of [Joh-87];  see also  [Cia-02] and [StFi-73].  We caution the reader 
that the situation of the Dirichlet problem on a disk for the Laplace PDE is very 
atypical in that an explicit solution is available (Theorem 13.1).  The next two 
exercises for the reader will involve slight variations of this PDE; the first one 
deals with the same type of BVP but on another domain, while the second deals 
with a slightly different PDE (Poisson’s) on the disk.  It may come as a surprise 
that for such mild variations, no explicit solution techniques are known.  
 
  From our experience with both methods of numerical quadrature applied to the 
same problem of Example 13.7,  we see that in any FEM program, the amount of 
time devoted to numerical quadrature is a crucial consideration.  The relevant 
theorem on how numerical quadrature schemes affect the order of convergence of 
an FEM depends on the maximum degree of general polynomials for which the 
quadrature scheme integrates exactly.   Stated roughly, if the error of an FEM 
approximation is of order ,kδ  i.e., ˆ ku u Cδ− ≤  (cf. (25)), and if the Gaussian 
quadrature formula (of form (22)) used is exact for all polynomials (in x and y) of 
degree at most 2k − 2, then the same order of accuracy (perhaps with a different 
value of C) will hold for the solution resulting from the FEM with the numerical 
quadrature formula being used.  For details, see Chapter IV of [CiLi-89]; see also 
Section 4.3 of [StFi-73].    In our case, k = 1, so that this theorem really only 
requires that constant functions be integrated exactly by the numerical quadrature 
formula being used.  Nonetheless, the extra precision of our quadrature formula 
(24) comes at very little cost and will imrove the accuracy of our method.  In the 
following two exercises for the reader, this quadrature formula is to be invoked in 
the FEM. 
 
EXERCISE FOR THE READER 13.11:  Using the grid of Example 13.3, apply 
the FEM to solve the following Dirichlet problem on the annulus 

2 2{( , ) :1 4}x y x yΩ = ≤ + ≤ : 
 

2 2

2 2

(PDE) 0 on
(BC) 2 on 1 .

(2, ) cos(2 ) on 4

u
u x y

u x yθ θ

∆ = Ω
 ≡ + =
 = + =

 

 

Plot your FEM solution and indicate the number of nodes, internal nodes, and 
elements.  Your solution plot should look like that in Figure 13.39(a). 
 
EXERCISE FOR THE READER 13.12:  (a) Use the FEM to solve the following 
Poisson-Dirichlet problem on the unit disk 2 2{( , ) : 1}x y x yΩ = + ≤  with the 
triangulation of Method 2 of the solution to Example 13.2(a) 
 

{( ) on ,( ) 0 on
PDE u f
BC u

∆ = Ω
= ∂Ω
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where the load ( , )f x y  equals 100 on the (small) disk of radius r = 0.125 and 
center (x,y) = (0,0.5), and zero elsewhere.  Plot your FEM solution and indicate the 
number of nodes, internal nodes, and elements.  Your solution plot should look 
like that in Figure 13.39(b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.39:  (a)  (top) Plot of the FEM solution to the BVP of Exercise for the Reader 
13.11.  (b) (bottom) Plot of the FEM solution to the BVP of Exercise for the Reader 
13.12(a).   
 
 
(b)  The triangulation of part (a) was rather uniform and had 1795 nodes.  In this 
part we try to work with a smaller number of nodes but deploy them in a strategy 
that concentrates more of them near where the inhomogeneity f(x,y) has most of its 
action.    Construct a triangulation using between 500 to 1000 nodes and 
distributed in the four subregions of Figure 13.40(a) as follows:  Roughly 50% of 
the nodes are to be deployed in 1,Ω  25% in  2 ,Ω  15% in 3 ,Ω  and only 10% in 

4.Ω   Each of these regions is simply the intersection of the whole domain with the 
insides of the circles with center (0, ½) having radii: 1/4, 1/2, 1, and 3/2, 
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respectively.  The distribution should be more or less uniform in each subregion.  
Obtain and plot the FEM solution.  Your solution should look something like the 
one shown in Figure 13.40(c).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.40:  (a) (left) Diagram for node deployment strategy of part (b) in Exercise for 
the Reader 13.12.  The unit disk Ω is split up into four subregions: 1 2 3, , ,Ω Ω Ω  and 4.Ω   
(b) (top right) A corresponding triangulation.  (c) (bottom) The corresponding FEM 
solution; it appears graphically indistinguishable from the one obtained in part (a).      
 
 
  We now move on to describe the FEM for the general case of the BVP (10): 
 

1

2

(PDE) ( ) on
(BCs) on .

on

p u qu f
u g

n u ru h

−∇ ∇ + = Ω = Γ
 ∇ + = Γ







 

 
Under the assumptions indicated in the theoretical discussion earlier in this 
section, this BVP can be shown to be equivalent to the following minimization 
problem:   
 
  Minimize the functional:   
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2

2 2 2 21 1 1 1
2 2 2 2[ ] [ ] [ ] ,x yF u pu pu qu fu dxdy ru hu ds

Ω Γ

= + + − + −∫∫ ∫  (26) 

 
over the following set of admissible functions:   
 

{
}1

: : ( ) is continuous , ( ) is piecewise continuous
 and bounded, and ( , ) ( , ) on .

v v x v x
v x y g x y

′Ω →
= Γ

A =
 

 
(27) 

 
Note that the class of admissible functions requires only the Dirichlet boundary 
conditions (on 1Γ ).   The Robin boundary conditions (on 2Γ ), are accounted for in 
the functional (26) and will be automatically satisfied by the solution.  
 
  Analogous to the one-dimensional method presented in Section 10.5, the FEM 
will solve a corresponding finite-dimensional minimization problem where the 
functional F[u] of (26) is kept the same, but the set of admissible functions is 
reduced to an approximating smaller set determined by the basis functions of the 
triangulation.   Thus we will be looking for minimizers of the functional F among 

functions of the form 
1

,
m

i i
i

v c
=

= Φ∑  where the ( , )i i x yΦ = Φ  are the basis functions.  

The basis functions corresponding to nodes on the boundary portion 1Γ  will have 
their coefficients determined by the Dirichlet boundary conditions; it is the 
remaining coefficients (corresponding to interior nodes and nodes on the boundary 
portion 2Γ ) that need to be determined.  We now briefly outline the FEM for this 
general BVP.  We follow this outline with some additional details and then give 
examples. 
 
 
FEM FOR THE BVP (10) GENERAL CASE:   
 
Step #1:  Decompose the domain into elements, and represent the set of nodes 
and elements using matrices.  Separate the nodes iN  into the internal nodes 
and non-Dirichlet boundary nodes:  1 2, , , nN N N (that lie in 2 ),Ω∪Γ  and 
the Dirichlet boundary nodes 1 2, , ,n n mN N N+ +  (that lie on 1Γ ).   Denote the 
basis function 

iNΦ corresponding to node iN  simply by .iΦ     It is important 

that nodes be placed at all endpoints (interfaces) of 1Γ / 2Γ  and that these 
endpoints be counted as Dirichlet boundary nodes (i.e., grouped with those in 

1Γ ). 
Step #2:  Use the Dirichlet BCs ( , ) ( , )u x y g x y=  on 1Γ  to determine the 
coefficients of the Dirichlet boundary node basis functions of an admissible 

function: 
1

,
m

i i
i

v c
=

= Φ∑  i.e., ( )i ic g N=  for each 1, 2, , .i n n m= + +   
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Step #3:  Assemble the n n×  stiffness matrix  A and load vector b needed to 
determine the remaining coefficients 1 2, , , nc c c  which work to solve the 
discrete minimization problem corresponding to the BVP. 
Step #4:  Solve the stiffness equation Ac = b, and obtain the FEM solution 

 
1

.
m

i i
i

v c
=

= Φ∑  

 
As before, the coefficients 1 2, , , nc c c  will eventually be determined as the 
solution vector 1 2[ ]nc c c c ′=   of a linear system (14) Ac = b.  The stiffness 
matrix A and load vector b will, in general, have entries given as follows:   
 

2

[ ] (1 , ),ij i j i j i ja p q dxdy r ds i j n
Ω Γ

= ∇Φ ∇Φ + Φ Φ + Φ Φ ≤ ≤∫∫ ∫  (28) 
 

and  

( )

2

21
[ ] 1 .

j j j

m

s s j s j s j
s n

b f dxdy h ds

c p q dxdy r ds j n

Ω Γ

= + Ω Γ

= Φ + Φ

  − ∇Φ ∇Φ + Φ Φ + Φ Φ ≤ ≤ 
  

∫∫ ∫

∑ ∫∫ ∫

 

 
 
(29) 

 
In these formulas the integrals over 2Γ  are with respect to arclength (i.e., 
positively oriented line integrals).  These can be derived in a similar fashion to 
what was done in the purely Dirichlet BC case (see the development of (13)).   As 
before, we observe that the stiffness matrix is a symmetric matrix.  The time- 
consuming part of the FEM is still the assembly process.  The mechanics are as in 
the purely Dirichlet case (just replace (15  ) and (16  ) with their analogs for (28) 
and (29)). 
 
  The assembly process can be coded much like the way we did it for Example 
13.7.   The only new feature here is the presence of the line integrals.  Before 
entering into the MATLAB code, we give a brief outline of how such line integrals 
can be evaluated.  We show how to numerically evaluate integrals of the form  

2 T

F ds
Γ ∩
∫



, where F is any function on 2Γ  in the setting of an assembly code.   Any 

such integral can be broken up into a sum of corresponding integrals over line 
segments.  Let L  denote a typical such line segment, connecting nodes 1N  and 

2N  of T


.  Letting 2 1v N N= −
 , we can write:  

 
1

1
0

( ) || || ,
L

F ds F N sv v ds= +∫ ∫
   (30) 

 

from the definition of line integrals.  Such integrals could be done with 
MATLAB’s quad (or quadl)—but in a general FEM code, it would be awkward 
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to combine the M-files for the integrand “F” with the needed change in variables 
unless we resort to symbolic variables.  We avoid this dilemma and maintain 
consistency with the recommended method for approximating double integrals by 
invoking the following numerical quadrature approximation for ordinary integrals: 
 

1

0

( ) (1/ 6){ (0) 4 (1/ 2) (1)}.f x dx f f f≈ + +∫  (31) 

 
This formula, known as the Newton-Coates formula with three equally spaced 
points, is exact for polynomials up to degree three (Exercise 24).  For more on 
such one-dimensional quadrature formulas, see Chapter 5 of [ZiMo-83], or see any 
good book on numerical analysis.  What is most pertinent is that the accuracy of 
this approximation makes it feasible to use in the FEM; the underlying theory can 
be found in the references mentioned above.  Combining (30) and (31) yields the 
following quadrature approximation, which is easily incorporated in FEM codes: 
 

1 2 1 1 2 2(|| || / 6){ ( ) 4 ([ ] / 2) ( )},
L

F ds N N F N F N N F N≈ − + + +∫  (32) 

 
EXERCISE FOR THE READER 13.13:  (a) Write an M-file lineint = 
bdyintapprox(fun, tri, redges)  that works as follows:  The inputs 
will be fun, an inline (or M-file) function of the variables x and y, a 3 2×  matrix 
tri of nodes of a triangle in the plane, and a 2-column matrix redges, possibly 
empty ([ ]).  The rows of redges consist of the corresponding increasing node 
indices (from 1 to 3 corresponding to their row in tri) of nodes that are endpoints 
of segments of the triangle that are part of the “Robin” boundary (for an 
underlying FEM problem).  Thus the rows of redges can include only the 
following three vectors:  [1 2], [1 3], and [2 3].   The output, lineint, will be 
the approximation of the corresponding line integral of fun over the Robin 
segments of the triangle, by using formula (32).    
(b) Test the accuracy of your M-file in computing the following line integrals over 
the indicated edge sets of the triangle with vertices 1 (0,0),N = 2N =  
(2,0), 3 (0,3),N = and then on the triangle with vertices 1 (0,0),N =  2 (.2,0),N =  

3 (0,.3).N =  In the notation used below, ijε denotes the edge of this triangle 
joining iN  to jN  ( i j≠ ).  The line integrals are given below for the larger 
triangle: 
 

12 23 12 13

4 8 4 13, cos( / 4 / 2) 2 / .ds x y ds
ε ε ε ε

π π π
∪ ∪

= + + =∫ ∫  

 

 
  In our next example, we will solve a BVP over an odd-shaped region.  The 
problem is carefully constructed so that the exact solution will be available for 
comparison purposes.  In Exercise for the Reader 13.14, the reader will be asked to 
solve another such problem on the same region for which an exact solution is not 
available.    
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EXAMPLE 13.8:  Use the finite element method to solve the following mixed 
BVP over the parabolically shaped domain {( , ) :0 10, 0x y x yΩ = ≤ ≤ ≤  

(10 )}x x≤ − : 
 

2 1/ 2

(PDE) 1/ 25 on

(BCs) 0 on -axis

on (10 )
25(101 40 4 )

u

u x
yn u y x x
x x

− ∆ = − Ω

 =


∇ = = − − +





. 

 

(a) Use first a triangulation with between 300 and 500 nodes that are more or less 
uniformly distributed.   Compare with the exact solution 2( , ) / 50.u x y y=  
(b)  Repeat part (a) this time using a similar triangulation with between 1000 and 
2000 nodes.   
 
  Before we begin to solve this example, we leave the reader to perform the 
following: 
 
EXERCISE FOR THE READER 13.14:  Verify that the exact solution provided 
really solves the BVP in the above example. 
 
SOLUTION TO EXAMPLE 13.8: Part (a):  To decide on the linear gap distance 
between nodes, we first find the area of :Ω  
 

10
2 3 10

0
0

area( ) = (10 ) [5 / 3] 500 / 3x x dx x xΩ − = − =∫  

 

If we place the nodes in small square configurations (cf. Method 1 of Example 
13.2(a)), then, roughly, each node would account for an area 2.δ   Thus, if m 
denotes the number of nodes we use, then we would have (approximately)  

2 area( ),mδ ≈ Ω  the left side being a bit larger due to boundary nodes.  This gives 
the estimate 
 

area( ) / ,mδ ≈ Ω  (33) 
 
for the gap size we should use if we want to deploy m nodes.   This formula can be 
used in the creation of squarelike nodegrids on any two-dimensional region with 
smooth boundary curves.  Using (33) with the above area and 350,m =  we arrive 
at the value 500 / 3/ 350 0.6901....δ = ≈  
 
We begin by using MATLAB to deploy nodes in the interior of ,Ω  maintaining a 
safe distance close to δ  away from the boundary and placing them in a square 
grid configuration with sidelength :δ  
 
>> bdyf= inline('x.*(10-x)'); 
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>> delta=sqrt(500/3/350); 
>> nodecount=1; 
>> for i=1:10/delta 
for j=1:bdyf(i*delta)/delta 
  xtemp=i*delta; ytemp=j*delta; 
  if (bdyf(xtemp-delta/2)>ytemp)&...  
  (bdyf(xtemp)>ytemp+delta/2)&(bdyf(xtemp+delta/2)>ytemp) 
%These conditions assure that the parabolic portion of the boundary  
%does not get too close to the candidate (xtemp, ytemp) for an 
%internal node. 
   x(nodecount)=xtemp; y(nodecount)=ytemp; 
   nodecount = nodecount+1; 
  end 
end 
end 

 
We would like to assign the boundary nodes in such a way that the distance gap 
between nodes is approximately .δ   This is quite simple to do on the straight 
portion of the boundary.  For the curved portion, we now introduce a general 
method to accomplish such node deployment.  Recall, the arclength formula for 

the graph of a function ( )f x  over an interval [ , ]a b :  21 [ ( )] .
b

a

L f x dx′= +∫   Now 

the parabolic boundary graph function has ( ) 10 2f x x′ = −  so that the largest that 

the integrand 21 [ ( )]f x′+  will be over [0, 10] is 101 10≈ .  (This maximum 
change in arclength occurs near the endpoints where the parabola is most steep.)  
Since we will place a node on the parabola at x = 0, y = 0 (call this the “most 
recent node”), and then continue advancing x by / 3 10δ ⋅  (so the corresponding 
arclength of the parabola will advance by no more than about / 3δ ), as soon as the 
arclength from the most recent node exceeds ,δ  we create a new node.  Since we 
will place a node also at (10,0), we will place a safeguard to prevent the nodes on 
the parabola from getting too close to this one.  The code below is set up so that 
the Dirichlet nodes are indexed last.   
 
>> arcint = inline('sqrt(101-40*x+4*x.^2)'); 
>> xref1=0; xref2=delta/30; cumlen=quad(arcint,xref1,xref2); 
>> while xref1<10 
  while cumlen<delta 
   xref2=xref2+delta/30;; 
   cumlen=quad(arcint,xref1,xref2); 
  end 
  if xref2<10-delta/40 
   x(nodecount)=xref2; y(nodecount)=bdyf(xref2); 
   nodecount = nodecount+1; 
  end 
  xref1=xref2; xref2=xref2+delta/30; 
  cumlen=quad(arcint,xref1,xref2); 
end 
if quad(arcint,xref1,10)>delta/2 
  nodecount = nodecount+1; 
end 
>> x(nodecount)=10; y(nodecount)=0; 
>> nodecount = nodecount+1; 
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>> %finally put nodes on interior of horizontal segment 
>> num = floor(10/delta); delta2=10/num; xref=10-delta2; 
>> while xref>delta2/4 
  x(nodecount)=xref; y(nodecount)=0; 
  nodecount = nodecount+1; xref=xref-delta2; 
end 
>> x(nodecount)=0; y(nodecount)=0; %last node 
>> nodecount = nodecount+1; tri=delaunay(x,y); 
>> trimesh(tri,x,y), axis('equal') %Plots the triangulation 

 
The triangulation is shown in Figure 13.41(a).  From the way the nodes were 
constructed, the boundary nodes come after the interior nodes and the first 
boundary node is on the parabolic portion of the boundary.  We can thus find the 
key indices by:   
 
>> nint=min(find(abs(y-bdyf(x))<10*eps))-1 %number of interior nodes 
nint = 307 
>> n=find(x==10&y==0)-1 %number of interior/Robin nodes 
n = 373 
>> m=length(x) %number of nodes  
m = 388 
>> size(tri) 
ans =  693     3  (So there are 693 elements.) 
 
We give special names to the node numbers of the endpoints of the segment 
(interface with Robin/Dirichlet nodes): 
 
>> dir1 = m;%node (0,0)  
>> dir2 = nint+1; %node (10,0)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 13.41:  (a) (left) The triangulation of the parabolic region for the BVP of 
Example 13.8(a).  There are 388 nodes and 693 elements.  With this resolution the curved 
boundary is rather well represented by the element boundaries, except near the top where 
the curvature of the parabola is most extreme.  (b) (right)  The FEM solution of Example 
13.8(a).  The exact solution is graphically indistinguishable, the maximum relative error 
being less than 1%.    
 
 
From the key node indices found above, we conclude: 
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Interior nodes:  1:307 
Robin nodes (on interior of parabola):  308: 373 
Dirichlet nodes (on line segment):  374:388 
 
Notice we have created nodes at the interfaces of the two boundary portions 
(Dirichlet meets Robin) and these interface nodes will be assigned the Dirichlet 
conditions, as required.  Since the Dirichlet boundary conditions are zero, simply 
creating a 388-length vector c of zeros will take care of assigning the Dirichlet 
nodes their appropriate values: 
 
>> c= zeros(m,1); 
 

The crucial index here is n = 373, the number of interior nodes added to the 
number of Robin boundary nodes; this is how many coefficients need to be 
determined.  Since, in (10), we have 1p ≡ , 0q ≡ , 1/ 25,f = −  0g ≡ , 0r ≡ , and 
since 0 ( )sc s n= > , the element matrix analogues of (28) and (29) (cf.  (15  ) and 
(16  )) are as follows:  
 

[ ] (1 , 3),i i
T

a dxdy
α βαβ α β= ∇Φ ∇Φ ≤ ≤∫∫





  

and 
 

2

( 1/ 25) ( ) ( , ) (1 3),i i
T T

b dxdy h x y ds
α αα α

Γ ∩

= − Φ + Φ ≤ ≤∫∫ ∫
 

  

 

where 2 1/ 2( , ) .
25(101 40 4 )

yh x y
x x

=
− +

 

 
  For each element index ,  these coefficients need to be computed only when the 
nodes iα  and/or iβ  are interior or Robin nodes (i.e., , 373i i nα β ≤ ≡ ) 
corresponding to vertices of the corresponding element.  The assembly code will 
invoke the M-file gaussianintapprox of Exercise for the Reader 13.10 for 
approximating the double integrals, and the M-file robinbdyint of Exercise for 
the Reader 13.13 for numerically evaluating line integrals.  Here is the assembly 
code: 
 
N=[x' y']; E=tri; A=zeros(n); b=zeros(n,1); [L cL]=size(E); 
for ell=1:L 
  nodes=E(ell,:); %global node indices of element 
  intnodes=nodes(find(nodes<=n)); %global interior/Robin node indices 
%find coefficients [a b c] of local basis functions 
% ax + by +c; for  int/robin nodes  
  for i=1:length(intnodes) 
   xyt=N(intnodes(i),:); %main node for local basis function 
   onodes=setdiff(nodes,intnodes(i)); 
%global indices for two other nodes (w/ zero values) for local basis 
%function 
   xyr=N(onodes(1),:); 
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   xys=N(onodes(2),:); 
   M=[xyr 1;xys 1;xyt 1]; %matrix M of (4) 
%local basis function coefficients using (6B) 
   abccoeff=[xyr(2)-xys(2);xys(1)-xyr(1);xyr(1)*xys(2)-
xys(1)*xyr(2)]/...  
   det(M); 
   intgrad(i,:)=abccoeff(1:2)'; 
   abc(i,:)=abccoeff'; 
end 
 
% determine if there are any Robin edges 
marker=0; %will change to 1 if there are Robin edges. 
roblocind=find(nodes==dir1|nodes==dir2|(nodes<=n& nodes >=(nint+1)));  
%local indices of nodes for possible robin edges 
if length(roblocind)>1 
  elemnodes = N(nodes,:); 
%now find robin edges and make a 2 column matrix out of their local 
%indices. 
  rnodes=nodes(roblocind); %global indices of robin nodes 
  count=1; 
  for k=(nint+1):n 
   if ismember(k,rnodes) & ismember(k+1,rnodes) 
    robedges(count,:)=[find(nodes==k)  find(nodes==k+1)]; 
    count=count+1; marker =1; 
  end 
end 
end 
 
%update stiffness matrix 
for i1=1:length(intnodes) 
for i2=1:length(intnodes) 
  if intnodes(i1)>=intnodes(i2) %to save some computation, we use  
  %symmetry the stiffness matrix. 
  fun1 = num2str(intgrad(i1,:)*intgrad(i2,:)',10);  
  %integrand a-integral 
  fun=inline(fun1,'x', 'y'); 
  integ=gaussianintapprox(fun,xyt,xyr,xys); 
A(intnodes(i1),intnodes(i2))=A(intnodes(i1),intnodes(i2))+integ; 
end 
end 
end 
 
%update load vector 
for i1=1:length(intnodes) 
  ai1 = num2str(abc(i1,1),10);  
  bi1 = num2str(abc(i1,2),10);  
  ci1 = num2str(abc(i1,3),10); 
  fun=inline([ai1,'*x+',bi1, '*y+', ci1],'x','y');  
  integ=-1/25*gaussianintapprox(fun,xyt,xyr,xys); 
  b(intnodes(i1))=b(intnodes(i1))+integ; 
  %now add Robin portion, if applicable 
  %robin edges were computed above 
  if marker==1 
prod=inline(['y./(25.*sqrt(101-
40.*x+4.*x.^2))','*(',ai1,'*x+',bi1,... 
 '*y+', ci1,')'],'x','y'); 
b(intnodes(i1))=b(intnodes(i1))+bdyintapprox(prod, elemnodes,...  
robedges); 
end 
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end 
clear roblocind rnodes robedges 
end 
A=A+A'-A.*eye(n); %Use symmetry to fill in remaining entries of A. 
 
 
sol=A\b; c(1:n)=sol'; c(n+1:m)=0; 
 
%The result is now easily plotted using the 'trimesh' function of the 
%last section: 
 
x=N(:,1); y=N(:,2); 
trimesh(E,x,y,c), hidden off 
xlabel('x-axis'), ylabel('y-axis') 
 
The following commands will plot the error using the exact solution provided.  
The result is shown in Figure 13.42(a). 
 
cexact = zeros(m,1); 
for i=1:length(x),cexact(i)=y(i)^2/50; end 
trimesh(E,x,y,abs(c-cexact)) 
 

Part (b) is done in exactly the same fashion.  In fact, the above code is designed in 
such a way that only the second line (defining delta) in the node deployment needs 
to be adjusted (change 350 to 1800).  With this change, the above code will 
produce a numerical solution with error plot shown in Figure 13.42(b).16  
 
  The various examples done so far contain all of the necessary techniques needed 
to apply the FEM to general BVPs of form (10).  The next two exercises for the 
reader contain two more examples.   
 
EXERCISE FOR THE READER 13.15:  Consider the following steady-state heat 
distribution problem on the parabolic region {( , ) :0 10, 0x y x yΩ = ≤ ≤ ≤  

( 10)}x x≤ − of the preceding example: 
 

(PDE) on
(BCs) 0 on -axis

2 40 on (10 )

u f
u x

n u u y x x

− ∆ = Ω =
 ∇ + = = −





, 

 

where the source function is given by: {200, if 4 6and10 15( , ) 0, otherwise.
x yf x y ≤ ≤ ≤ ≤=  

The region Ω along with the boundary conditions and the support of the source 
function f is illustrated in Figure 13.43(a).   
(a) Compute and plot the numerical solution of this BVP using the triangulation of 
the solution to part (a) of Example 13.8. 

 
16 For the convenience of the reader, the entire MATLAB codes for this example (and other longer 
examples and exercises for the reader of this chapter) are included as downloadable text files on the ftp 
site for this book (see the preface for the URL of this ftp site).  These codes can easily be pasted 
directly into the MATLAB window, and they can be modified to solve other FEM problems.   
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(b) Compute and plot the numerical solution of this BVP using the triangulation of 
the solution to Part (b) of Example 13.8.  Your plot should look like the one in 
Figure 13.43(b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 13.42:  Error plots for the FEM solution of Example 13.8.  (a) (left) Using the 
triangulation of part (a), which had 693 elements, the actual error was less than 1%.  (b) 
(right) Using the triangulation of part (b), which had 3587 elements, the actual error was 
less than 0.1%. 
 
 

 
 
FIGURE 13.43:  (a) (left) Illustration of the domain and boundary conditions for the 
steady-state heat distribution problem of Exercise for the Reader 13.15.  The parabolically 
shaped plate has an internal rectangular heat source (temperature = 200) shown by a dark 
rectangle.  The bottom (flat) edge is maintained at temperature 0 and the curved part of the 
boundary has a Robin boundary condition. (b) (right) An FEM solution of this problem.   
 
 
EXERCISE FOR THE READER 13.16:  (a)  Contruct a squarelike grid and then a 
corresponding triangulation with between 2000 and 3000 nodes for the domain of 
Figure 13.44(a). 
(b)  Use the FEM with your triangulation to solve the Laplace problem 0u∆ =  on 
this domain with boundary conditions as shown in Figure 13.44(a) and then plot 
your solution.   Your plot should look like the one shown in Figure 13.43(b).   
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FIGURE 13.44:  (a) (left) Illustration of the domain and boundary conditions for the BVP 
problem of Exercise for the Reader 13.16.  The circular (inner) boundary portion has 
Dirichlet boundary conditions; the remaining (outer) boundary portions have the indicated 
Neumann or Robin conditions.  (b) (right) Plot of the FEM solution for the Laplace problem 
having the indicated boundary data of (a).   The triangulation used had 2655 nodes and 
5024 elements.   

 
EXERCISES 13.3 
 
1. (a) Using the exact method of Example 13.5 (with Exercise for the Reader 13.4), solve the 

following BVP on the same hexagonal domain and triangulation of that example: 

{(PDE) 0 on ,(BC) on
u
u x y

− ∆ = Ω
= + ∂Ω  

and plot the resulting numerical solution.  
(b) Check that u(x,y) = x + y is the exact solution of the BVP; compare the numerical solution 
with this exact solution. 

 
2. (a) Using the exact method of Example 13.5 (with Exercise for the Reader 13.4), solve the 

following BVP on the same hexagonal domain and triangulation of that example: 

2 2
(PDE) 0 on ,
(BC) on

u
u x y
− ∆ = Ω

 = + ∂Ω
 

and plot the resulting numerical solution.  
(b) Check that 2 2( , )u x y x y= + is the exact solution of the BVP; compare the numerical 
solution with this exact solution. 

 
3. (a) Using the exact method of Example 13.4 (with 

Exercise for the Reader 13.4), apply the FEM on the 
triangular domain Ω  of Figure 13.45 with the 
triangulation shown there to solve the following BVP: 

{(PDE) 2 on .(BC) on
u
u x

− ∆ = Ω
= ∂Ω  

The vertical/horizontal distance between adjacent nodes 
is one, and node #7 has coordinates (0,0) (so, for 
example, node #1 is at (0,3) and node #10 is at (3,0)).  
Plot the resulting numerical solution. 
(b) Solve this problem again with the FEM but this time 
use the Gauss quadrature formula (24) (or the 
gaussianintapprox M-file)  to evaluate integrals.  
Compare with the solution obtained in part (a); 

 

FIGURE 13.45:  Triangular 
domain with basic triangulation 
for Exercise 3. 
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comment on any discrepancies or lack thereof.  
(c) Re-solve the problem this time using MATLAB’s dblquad to evaluate all double integrals.  
Compare with the solution obtained in part (a). 

 
4. Repeat all parts of Exercise 3 for the following BVP on the domain Ω of Figure 13.45 described 

there. 

2
(PDE) ( , ) on ,
(BC) ( ) on

u f x y
u x y

− ∆ = Ω
 = + ∂Ω

   where 
0, if  y 1,

( , ) 1, if  1 2
2, if  2

f x y y
y

≤= < ≤
<

. 

 
5. Using the same triangulation on the hexagonal domain of Example 13.5, use the FEM to solve 

the following BVP: 

{(PDE) 3 on
(BC) on

u u
u x y

− ∆ + = Ω
= + ∂Ω . 

Note:  Since the quadrature formula (24) is exact for polynomials up to second degree, it can be 
used to exactly evaluate all of the integrals that arise. 

 
6. Using the same triangulation on the triangular domain of Exercise 3, use the FEM to solve the 

following BVP: 

2
(PDE) ( , ) on
(BC) on

u u f x y
u x

− ∆ + = Ω
 = ∂Ω

,   where {0, if  x 1,( , ) 2, if  1f x y x
≤= − > . 

Note:  Since the quadrature formula (24) is exact for polynomials up to second degree, it can be 
used to exactly evaluate all of the integrals that arise. 

 
7. Consider the Dirichlet problem (19) on the unit disk 2 2{( , ) : 1}:x y x yΩ = + <  

2
(PDE) 0 on
(BC) (1, ) cos ( ) on

u
u θ θ

∆ = Ω
 = ∂Ω

. 

(a)  Use the FEM with the triangulation of part (c) of Example 13.7 to compute the numerical 
solution of the problem, performing the double integrals as in Example 13.7.  Keep track of the 
time needed to perform the main assembly (using tic…toc).  Use Poisson’s integral formula 
(Theorem 13.1) to compute the “exact solution” to this problem at the nodes of the triangulation 
and plot solution and the error of the FEM solution obtained. 
(b)  Repeat part (a), but this time use the Gauss quadrature formula (24) (or the 
gaussianintapprox M-file) to compute the double integrals in the FEM.   Compare and 
contrast the FEM numerical solutions of parts (a) and (b). 
(c)  Use the FEM as in part (b) to find the numerical solution of this problem using a 
triangulation of the circle having between 3000 and 4000 nodes.  Plot the error against the 
corresponding “exact solution” from Poisson’s integral formula.  
(d) Repeat each of the above parts for the Dirichlet problem identical to the above but with the 
boundary condition being changed to 2(1, ) sin ( / 2).u θ θ=  

 
8. Consider the following Dirichlet problem (19) on the disk 2 2{( , ) : ( 1) ( 3) 5}:x y x yΩ = − + − <  

{(PDE) 0 on
(BC) ( , ) ln 2 on

u
u x y x y

∆ = Ω
= + ∂Ω . 

(a)  Use the FEM with a triangulation having between 500 and 1000 nodes to compute the 
numerical solution of the problem, performing the double integrals as in Example 13.7.  Keep 
track of the time needed to perform the main assembly (using tic…toc).  Use Poisson’s 
integral formula (Theorem 13.1) to compute the “exact solution” to this problem at the nodes of 
the triangulation and plot solution and the error of the FEM solution obtained. 
(b)  Repeat part (a), but this time use the Gauss quadrature formula (24) (or the 
gaussianintapprox M-file) to compute the double integrals in the FEM.   Compare and 
contrast the FEM numerical solutions of parts (a) and (b). 
(c)  Use the FEM as in part (b) to find the numerical solution of this problem using a 
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triangulation of the circle having between 3000 and 4000 nodes.  Plot the error against the 
corresponding “exact solution” from Poisson’s integral formula.   
(d) Repeat each of the above parts for the Dirichlet problem identical to the above but with (i) 
the boundary condition being changed to ( , ) 2 yu x y x e= + and then (ii) with the PDE changed to 

( )x ye u u y+−∇ + = but all else as in the original problem.   
 
9. Consider the following Robin problem for the Laplacian on the unit disk {( , ) :x yΩ =   

2 2x y+ 1}:<  

{(PDE) 0 on
(BC) 3 on

u
n u u

∆ = Ω
∇ + = ∂Ω




. 

(a)  Use the FEM to solve this problem using a triangulation having between 500 to 1000 nodes 
and plot your numerical solution.   
(b)  Create a triangulation having between 1500 and 2000 nodes containing the node set of your 
triangulation of part (a).  Re-solve the BVP with the FEM on this triangulation.  Plot the new 
solution, compare it with that of part (a), and finally plot the difference of the two solutions on 
the common node set.   
(c)  Create a triangulation having between 3000 and 3500 nodes containing the node set of your 
triangulation of part (b).  Re-solve the BVP with the FEM on this triangulation.  Plot the new 
solution, compare it with that of part (b), and finally plot the difference of the two solutions on 
the common node set.   
(d) Repeat each of parts (a) through (c) for the BVP with the same Robin boundary conditions of 
the above problem, but with the PDE changed to:    
(i) ( ) 0,x ye u+∇ =    (ii) ( ) 3,x ye u+∇ =   (iii) ( ) 3,x ye u+∇ = −  (iv) ( ) 3.x ye u u+−∇ + =  

 

10. Consider the following BVP on the annulus 2 2{( , ) :1 4}x y x yΩ = ≤ + ≤ of Exercise for the 
Reader 13.11: 

2 / 2

2 2

2 2

(PDE) on
(BCs) 10 on 1 .

(2, ) 50 on 4

xu e
n u x y

u x yθ

 ∆ = Ω
∇ ≡ + =

 = + =




  

(a)  Use the FEM to solve this problem using a triangulation having 500 to 1000 nodes and plot 
your numerical solution.   
(b)  Create a triangulation having between 1500 and 2000 nodes containing the node set of your 
triangulation of part (a).  Re-solve the BVP with the FEM on this triangulation.  Plot the new 
solution, compare it with that of part (a), and finally plot the difference of the two solutions on 
the common node set.   
(c)  Create a triangulation having between 3000 and 3500 nodes containing the node set of your 
triangulation of part (b).  Re-solve the BVP with the FEM on this triangulation.  Plot the new 
solution, compare it with that of Part (b), and finally plot the difference of the two solutions on 
the common node set.   
(d) Repeat each of parts (a) through (c) for the BVP with the same Robin boundary conditions 
of the above problem, but with the PDE changed to:    
(i) ( ) 0x ye u+∇ = ,   (ii) ( ) 3x ye u+∇ = ,  (iii) ( ) 3x ye u+∇ = − ,  (iv) ( ) 3x ye u u+∇ + = . 

 
11. This exercise will use the FEM to solve the heat problem (1)  

 

0 on , ( , )
/ 0, on outer rectangle

u=40,  on small circle, u=500, on large circle

u u u x y
u n
∆ = Ω =∂ ∂ =


 

from the introductory section.  Take the domain (see Figure 13.2) to be the rectangle:  
1 0.5, 0.5 0.5x y− < < − < <  with the following two disks deleted:  larger circle: center = 

(−0.65, 0.15), radius = 0.25 and smaller circle:  center = (0.1, −0.2), radius =  0.1.  In each case 
you are to plot your results.      
(a)  First use a triangulation with between 300 and 500 nodes, more or less uniformly spaced. 
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(b)  Repeat part (a) using a triangulation with between 1500 and 2000 nodes. 
(c)  (i)  Repeat parts (a) and (b) on the BVP gotten from (1) by changing the BC on the outer 
rectangle to be / 40,u n u∂ ∂ + =  but keeping all else the same. (ii) Do this again using instead 
the BC on the larger circle to be / 4 40.u n u∂ ∂ + =   (iii) Repeat using instead the BC on the 
larger circle to be / 80.u n u∂ ∂ + =   
(d) (i) Repeat parts (a) and (b) on the BVP gotten from (1) by changing the PDE to be 

( , ) ,u f x y∆ =  where ( , ) 100f x y = − on the circle with center center = (0.3, 0.25), radius =  0.1, 
and f(x,y) = 0 elsewhere (but keeping all else the same).  (ii)  Do this again but change the PDE 
to 2 ( , ).u u f x y∆ + =    

 
12. (Comparison of the FEM and the Finite Difference Method for a Certain Mixed BVP)  (a) Use 

the FEM to solve the BVP of Exercise for the Reader 11.8.  For the triangulation, let the node 
set correspond to that in part (a) of that exercise for the reader, i.e., nodes are uniformly spaced 
in a squarelike grid with horizontal and vertical gap size equaling h = 0.05.  Let MATLAB’s 
delaunay produce the actual triangulation once you create the node set.  Plot your solution 
and compare it with Figure 11.23(a).  Produce also a contour plot for your FEM solution and 
compare it with Figure 11.23(b).   
(b)  Repeat part (a), but using the finer grid with horizontal/vertical gap size h = 0.02. 

 
13. Repeat both parts of Exercise 11 on the BVP with the same boundary conditions but with the 

PDE changed from the Laplace equation to 2 2([ 1] ) cos( ).x y u u xy−∇ + + + =  

 
14. (Determination of Maximum Tolerable Heat) Consider the domain of Figure 13.46: 

 

 
 
FIGURE 13.46:  A domain consisting of two squares joined by a rectangular neck.  
 
 
(a) In this domain, an observer at location (-3, 1.5) (left side) cannot tolerate a temperature 
greater than 50.  All edges except for the right edge are kept insultated 0n u∇ =



 while the right 
edge will be maintained at a certain temperature hot .u T=    What is the maximum value of 

hotT so the observer’s requirement is met?  Try to get your answer accurate to at least two 
decimals.  For the PDE in the domain use the basic Laplace equation 0.u∆ =     
(b)  How would the answer in part (a) change if the rectangular length were to be doubled in 
length?   
(c)  How would the answer in part (a) change if the rectangular length were to have only half of 
its height? 
(d)  How would the answer in part (a) change if the square on the right were to have its 
sidelength doubled (but the left square is still kept the same)? 
(e)  How would the answer in part (a) change if the hot edge of the square on the right were the 
top edge rather than the right edge?  
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16. (a)  Triangulate the domain of Figure 13.48 

using between 400 and 800 nodes, more or less 
equally spaced. 
(b)  Repeat part (a) but this time use between 
2000 and 2500 nodes. 
(c)  Use the FEM and the triangulation of part 
(a) to solve the heat problem on the domain of 
Figure 13.48 governed by the Laplace equation 

0u∆ =  and the boundary conditions shown in 
the figure.  Plot your numerical solution.  
(d)  Repeat part (c), this time using the 
triangulation of part (b). 
(e)  Repeat both parts (c) and (d) on the 
modified BVP gotten by changing the boundary 
conditions on 2

1Γ and 3
1Γ  to be 0n u =



  
(insulated), but keeping all else the same. 
(f)  Repeat both parts (c) and (d) on the 
modified BVP gotten by changing the boundary 
conditions on 2

1Γ and 3
1Γ  to be the Robin 

conditions:  20n u =


 and 20,n u = −


  respect-
ively, but keeping all else the same. 
(g)  Repeat both parts (c) and (d) on the 
modified BVP gotten by changing the boundary conditions on 2

1Γ and 3
1Γ  to be the Robin 

conditions:  20n u u+ =


 and 20,n u u+ =


  respectively, but keeping all else the same. 
(h)  Repeat both parts (c) and (d) on the modified BVP gotten by changing the PDE to be 

/ 2(([2 ] ) 10,x y u u∇ + + =  but keeping all else the same. 

 
 
FIGURE 13.48:  Boundary conditions 
for the heat problem of Exercise 11.  The 
outer square boundary 2Γ is insulated, 
while the four circular inner boundary 
portions 1

iΓ , 1 4i≤ ≤ , are each 
maintained at the indicated temperatures.   

 
17. Let Ω be the domain between the x-axis and the graph of xy e=  from x = 0 to x = 4.   

(a) For the function 2( , ) sin( /( 1)) / 25,u x y x y x y= + +  determine functions g(x), f(x,y) and h(x,y) 
so that u(x,y) solves the following BVP:    

{(PDE) ( , ) on
(BCs) ( ) on -axis; ( , ) on curved portion of

u u f x y
u g x x n u u h x y
− ∆ + = Ω
= ∇ + = ∂Ω





. 

15. 

 
 
FIGURE 13.47:  Triangular domain 
with basic triangulation for Exercise 3. 

Let Ω be the domain shown in Figure 13.47, with 
the deleted disk having center (2.5, 2.5) and 
radius, 0.75.   
(a) Create triangulation of Ω having between 300 
and 400 (essentially equally spaced) nodes. 
(b) Create a triangulation of Ω  having between 
1500 and 2000 nodes.  
(c) Use the FEM with the triangulation of part (a) 
to solve the following BVP on Ω : 

0 on 
10, on triangle

u=100,  on circle

u
n u
∆ = Ω ∇ =




 . 

Plot your result and then repeat with the 
triangulation of part (b). 
(d) Repeat part (c) on the modified BVP gotten 
by changing the PDE to be (i), 2 / 2,u x−∆ =  but keeping all else the same; and then to (ii) 

/ 2 2 / 2.xu e u x−∆ + =  
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(b)  Construct a triangulation of Ω  having between 300 and 500 nodes.  Compute the 
corresponding FEM solution and use the exact solution to plot the error. 
(c)   Repeat part (b) this time using between 1500 and 2000 nodes.   

 
18. Write an M-file, integ=quadint(fun,v1,v2,v3, v4), whose inputs are fun an inline 

function of x,y, and four 2 1×  matrices v1, v2, v3, v4 that are vertices (in any order) of  
quadrilateral (four sided polygon) in the xy-plane.  If we denote this quadrilateral by ,Q  the 

output integ should be the numerical integral fun( , ) ,
Q

x y dxdy∫  computed using dblquad, 

MATLAB’s numerical integrator.   
 
19. Derive formulas (13) through (18) for the FEM for BVPs with purely Dirichlet BCs.     
 
20. (a)  Establish the integral formula (21) for general planar regions of Figure 13.34. 

(b)  Derive a similar integration formula for regions between functions of y.   
Suggestion:  For part (a), in the last integral, make the following substitution y = ylow(x) + 
u(ytop(x) - ylow(x)). 

 
21. Suppose that a Gauss quadrature formula  (22): 

1 1 2 2( , ) ( ) ( ) ( )n n
T

f x y dxdy w f w f w fξ ξ ξ≈ + + +∫   

is exact for polynomials of degree up to p.  Use Taylor’s theorem in two variables to show that 
if the integrand has continuous partial derivatives up to order p + 1, then the error of the 
approximation (22) is 1( ),pO h +  where h is the diameter of the triangle T.  

 
22. 

Show that the Gauss quadrature formula (23): 

{ }1 2 3
Area( )( , ) ( ) ( ) ( )

3T

Tf x y dxdy f V f V f V≈ + +∫  

is exact for linear (first-degree) polynomials, but not for quadratic (second degree) polynomials.  
Here, T is a triangle and 1 2 3, ,V V V  are its vertices.   

 
23. Show that the Gauss quadrature formula (24): 

 { }1 2 1 3 2 3
Area( )( , ) ([ ] / 2) ([ ] / 2) ([ ] / 2) ,

3T

Tf x y dxdy f V V f V V f V V≈ + + + + +∫  

is exact for quadratic (second-degree) polynomials.  Here, T is a triangle and 1 2 3, ,V V V  are its 
vertices.   
Suggestion:  First work with the standard triangle with vertices (0,0), (1,0), and (0,1).   You 
need only verify it for the basis polynomials and use of linearity.  Once this is done use affine 
maps to get the result for general triangles (see Exercise 19 of the previous section).   

 
24. Show that the Newton-Coates quadrature formula (30):  

 

1

0
( ) (1/ 6){ (0) 4 (1/ 2) (1)}f x dx f f f≈ + +∫  

is exact when f(x) is polynomial of degree at most three.  
 
NOTE:  The next four exercises will introduce the reader to some refinement and adaptive 
implementations of the FEM.  These are based on the simple refinement scheme of splitting an element 
into four similar elements by introducing a new node at the midpoint of each edge; see Figure 13.49. 
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FIGURE 13.49:  A refinement scheme for triangular meshes that is easily programmed into FEM 
routines.   
 
 
25. (M-file for Automatic Mesh Refinement)  The scheme of Figure 13.49 gives rise to a very natural 

refinement scheme that can be repeated for any number of iterations.  Simply start off with any 
triangulation 0A  of a given domain.  For the first refinement 1A of  0 ,A   the node set will 

be the node set of 0 ,A  along with the midpoints of all element edges.  Each element of  

0A gives rise to four elements of 1A as in Figure 13.49.   This procedure can be iterated to 

get a sequence of successively finer triangulations 0 ,A  1,A   2 ,A ….   We point out two very 

nice properties:  (i)  the node set of nA is contained in the node set of 1n+A (making it simple 
to compare FEM solutions on successive triangulations), and (ii) the minimum angle of any 
element of 1n+A equals the minimum angle of any element of nA (this keeps control of the 
eccentricity of elements, which is important for the FEM). 
(a)  Write an M-file that will perform the above refinement and with the following syntax: 
[newnodes, newtri]  = meshrefine(nodes, tri) 
The input variable nodes is a two-column matrix of x- and y-coordinates of a given 
triangulation of a planar domain and tri is the corresponding three-column matrix of node 
numbers of the elements of the triangulation.  (As usual, the node numbers are the rows of the 
nodes as they appear in the nodes matrix.)   The output variables:  newnodes and newtri 
are the corresponding matrices for the refined partition. 
(b)  With 0A  being the triangulation of the hexagonal domain of Example 13.1 (see Figure 

13.5),  apply your M-file to construct and plot the next three successive triangulations:  1,A  

2A and 3.A  

(c)  With 0A  being the triangulation of the annular domain of Example 13.3 (see Figure 
13.16(c)),  apply your M-file to construct and plot the next three successive triangulations:  

1,A   and 2.A  
(d)  Comment on the performance of this refinement scheme for domains with polygonal 
boundaries (as in part (b)) versus domains with curved boundaries (as in part (c)).  Can you 
suggest any modifications to help the above scheme better represent boundaries in cases of 
curved domains?   Property (i) should still be maintained, and (ii) should be “essentially 
maintained” in that the minimum angle of any element of nA should not be too much smaller 

than the minimum angle of all elements of 0.A    For any such ideas, build them into a 
modified M-file and experiment on some domains.   

 
26. (Examples of FEM with Mesh Refinement)  (a) For the BVP of Example 13.5, set up MATLAB 

code to perform the FEM starting with the triangulation of that example, and then after refining 
the triangulation (as in Exercise 25), re-solving the problem on the new triangulation and 
looking at the absolute value of the difference of the new FEM solution with the previous FEM 
solution (on the previous grid).  Continue to iterate this process until the absolute value of the 
difference is less than 1e-4 or the FEM calculations take more than a few minutes, whichever 
happens first.  Plot the successive FEM solutions as well as the difference graphs.    
(b)  Repeat the instructions of part (a) on the BVP of Exercise 2; compare the final FEM 
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solution with the exact solution given there. 
(c)  Repeat the instructions of part (a) on the BVP of Exercise 3 (using the initial triangulation 
given there).   

 
27. (An Adaptive Scheme for the FEM)  This exercise develops an example of an adaptive scheme 

for the FEM.  General adaptive schemes recursively solve a BVP with the FEM (starting with 
any triangulation of the domain) and then attempt to locate those elements where the error of the 
FEM solution is greatest.  The mesh is next refined in a way that puts more nodes near the 
elements that were identified in the error estimation.  This process is then iterated until some 
stopping criterion (a sufficiently small estimated error or difference in successive FEM 
approximate solutions) allows an exit.   Here is a basic outline of one such scheme: 
(i) Start with any triangulation of a domain and solve the given boundary value problem with 
the finite element method. 
(ii) For each element, note its oscillation (= max value − min value of computed solution on 
three vertices).   

 

  

    
 
FIGURE 13.50:  Illustration of adaptive mesh refinement scheme of Exercise 27.  (a) (left) Step 1,  (b) 
(middle) Step 2, and (c) (right) contingency plan for Step 3.     
 
 
 (iii) Flag those elements whose oscillations are “large” (with respect so some specified indicator, 

say more than double of the average).17 
(iv) Refine the mesh accordingly so that each element flagged in (iii) gets split into three similar 
(triangular) elements as in Figure 13.49.   Adjacent elements need to be refined accordingly so 
no hanging nodes remain.  The two requirements are that the original node set is contained in the 
refined node set and no angle of any element gets too small (eccentricity requirement). 
For definiteness, let us say that in (iii) the flagging criterion for elements is that the maximum 

 
17 We are using a rather basic error indicator.  More sophisticated error indicators can be developed 
using advanced techniques of Sobolev spaces; see, for example, [CiLi-89], [Cia-02], or the classical 
reference [StFi-73] for details on such methods.   
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oscillation is more than double the average of all of the oscillations.  In (iv) let us say that the 
eccentricity requirement stipulates that the minimum angle of any refinement cannot be less than 
1/3 of the minimum angle, min ,θ  of the original triangulation.   
  Balancing these two requirements makes the refinement scheme a delicate task.  This sort of a 
scheme can be accomplished by iteratively applying a series of refinements that attempt (based 
on the two constraints) to isolate the “hanging nodes.”  We give an outline for such a scheme: 
 
OUTLINE FOR ADAPTIVE MESH REFINEMENT SCHEME: 
Step 1:  After refining the flagged elements as in (iv), the new nodes introduced need to mesh 
into the next triangulation.  Until they do become vertices of all adjancent elements, they will be 
referred to as “hanging nodes.”  Examine all neighboring elements of the flagged elements that 
were just refined; see Figure 13.50(a).  If possible, we would like to contain the spread of green 
(“hanging nodes”) but the problem is that we do not want any of the triangles to have very small 
angles.   For each of the three neighbor triangles, if half the angle of the node opposite the 
hanging node is not too small (< min /3θ ), then simply split it into two triangles by joining the 
hanging node of the first triangle to the opposite node of the neighbor triangle (Figure 13.50(a) 
has two such triangles18).  Otherwise, we are forced to refine the neighbor triangle as in (iv), but 
this introduces two new hanging (green) nodes. (Figure 13.50(a) has one of these). 
Step 2:  If Step 1 introduced any new hanging (green) nodes (as it did in Figure 13.50(a)), look at 
the neighboring triangles and try to contain the hanging nodes as in Step 1.  We may again 
introduce hanging nodes.  (Figure 13.50(b) illustrates this).  We continue to iterate this step until 
there are no longer any hanging nodes.  There is one contingency we need to mention (if a 
neighboring triangle runs into another that was already refined), this is illustrated in Figure 
13.50(c); below we explain what to do in such situations. 
Contingency plan for Step 3:  Figure 13.50(c) illustrates what to do if a neighbor triangle runs 
into one that was already refined.  We do not refine any triangle twice (this will give some 
control on the convergence of the algorithm and prevent the possibility of an infinite loop).  
Instead, we revert to the original refinement (three subtriangles instead of two) to take care of the 
internal green node; see Figure 13.50(c) .   
(a)  Write a MATLAB program that will perform the above adaptive scheme on the BVP and 
initial triangulation of Example 13.5.  What happens when you run this program?  Repeat, but 
now change the flagging criterion in (iii) to be that the oscillation of the FEM solution over an 
element exceeds 1/10.  Repeat with 1/10 replaced by 1/100.  Plot each refined mesh as well as 
the final FEM solution.   
(b)  Repeat the instructions of part (a) on the BVP of Exercise 2; compare the final FEM solution 
with the exact solution given there. 
(c)  Repeat the instructions of part (a) on the BVP of Exercise 3 (using the initial triangulation 
given there).    
(d)  Do you have any ideas for an alternative mesh refinement scheme (satisfying the two 
constraints mentioned above)?  

 
28. (Obtuse Angles in the Domain Are Sometimes Problematic for the FEM)  Engineers have known 

for some time, and mathematicians subsequently confirmed theoretically, that obtuse corners in 
the domain of a BVP can often slow down the convergence of the FEM near the boundary 
points with obtuse angles (see Section 8.1 of [StFi-73] or Section 5.6 of [AxBa-84]) .  Simple 
examples of domains with such obtuse angles are shown in Figure 13.51(b), (c).  In general, the 
larger the obtuse angle, the greater the possible problems with the FEM.  The extreme case is 
with an interior angle of 2π  physically corresponding to a crack, fissure, or material interface 
in the domain; see Figure 13.51(c).  This exercise will investigate such phenomena and explore 
stategies to mitigate problems that might arise.  We will examine a certain Dirichlet problem for 

 
18 Note that at the first iteration, this could not occur with the stated eccentricity requirement since 
bisecting any of the original angles would result in angles at least as large as min / 3;θ  so this pathology 
in the figure could only occur in later iterations.  In particular, for the first refinement, all hanging 
nodes could be isolated in Step 1.   
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the Laplace equation on such a domain where the exact solution is known.  For any angle ,ω  
where 0 2 ,ω π< ≤  we let ωΩ  denote the subdomain of all points in the unit square 

1 , 1x y− ≤ ≤  whose polar coordinates ( , )r θ satisify 0 .θ ω< <    Thus the domains of Figure 
13.51 are all examples of such domains.  In particular, the domain in Figure 13.51(b) is  

3 / 2πΩ and that of Figure 13.51(c) is 2 .πΩ    

(a)  Show that on any such domain ωΩ  the function (given in polar coordinates) 
/( , ) sin( / )u r rπ ωθ πθ ω= is harmonic (i.e., satisfies the Laplace equation 0u∆ = ) and vanishes 

on the angular edges (i.e., the rays of the angle emanating from the point O; see Figure 13.51.).   
(b)  For each of the domains in Figure 13.51 (for the one in Figure 13.51(a) use 2 /3ω π= ), 
apply the FEM to solve BVP consisting of the Laplace equation with the boundary conditions u 
= 0 on the angular edges of the boundary and /( , ) sin( / )u r rπ ωθ πθ ω=  on the remaining 
portion of the boundary.  Of course, you will need to convert the latter boundary conditions into 
cartesian (x,y) coordinates.   Start off with the corresponding triangulations shown in Figure 
13.52.   Then apply the algorithm of Exercise 25 to successively refine the triangulations and re-
solve with the FEM.  For each triangulation, plot the exact error using the exact solution in part 
(a).  Go through three refinements for each domain.   
(c)  Repeat part (b) for each of the three BVPs given there, but this time using the adaptive 
scheme of Exercise 27 in place of the refinement scheme of Exercise 25. 
(d)  Using the special form of the triangulations given, can you think of a more convenient 
refinement scheme for this problem?  Make up a reasonable one and test it out for several 
iterations comparing with the exact solution at each step. 
Suggestion:  An elegant and illuminating way to do part (a) is to derive the Laplace operator in 
polar coordinates to be:    2(1/ ) (1/ ) .xx yy rr ru u u r u r uθθ+ = + +      

 

 
 
FIGURE 13.51:  Simple examples of domains with different sorts of angles at a boundary point O.  (a) 
(left) In general acute angles do not pose any problems for the FEM.  (b) (middle)  Obtuse angles can 
sometimes lead to slower convergence of the FEM.  (c) (right) The larger the obtuse angle, the greater 
the potential difficulty.  The extreme case is the slit domain.  The indicated homogeneous Dirichlet 
boundary conditions on the angular edges is relevant for Exercise 28.   
 
 

 
 
FIGURE 13.52:  Initial triangulation for the domains of Figure 13.51 for Exercise 28. 
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29. Suppose that the FEM of this section is used to compute the solution of a BVP of form (10) 
whose exact solution is known to be a linear function ( , )      .u x y ax by c= + +   Assume the 
integrals are all computed exactly and that the domain and triangulation are such that the 
boundary of the domain consists entirely of edges of the triangulation.  Will the FEM solution 
always coincide with the exact solution?  Either explain whether this is true or, if you are unable 
to do so, perform a series of numerical experiments to test this hypothesis.   
Note:  Since the basis functions are piecewise linear, this seems to be the most general type of 
solutions that the FEM might be able to produce exactly.  An example of such a BVP and 
triangulation is given in Exercise 1.       
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CHAPTER 13:  THE FINITE ELEMENT METHOD 
  
EFR 13.1:  For 3 , the code given in Example 13.1 just needs a small modification to 
accommodate the change of node.  Indeed, in the for loop, the three modified lines are:  if 
ismember(3,T(L,:))==1,index=find(T(L,:)==3);nv=[T(L,1:2)3]; nv(index) 
=T(L,3);.  The new output of the modified loop is then the following matrix A: 

 
 
 
From this we can write:  

1
3 5

1, if ( , ) ,
( , ) 1, if ( , ) ,

0, otherwise.

x x y T
x y x x y T  

In a similar fashion, we find that: 

 
72 2

3 43 3 2
2 2

4 6 73 3
7

82

, if ( , ) , , if ( , ) ,
( , ) , if ( , ) , 1, if ( , ) ,

, if ( , ) , 0, otherwise.

x y x y T x y x y T
x y x x y T y x y T

x y x y T
 

 
EFR 13.2:  (a) As a quadrilateral has four vertices and a linear function in x and y has only three 
parameters (see equation (2)), linear functions are not versatile enough to accommodate arbitrarily 
specifying four numerical values at the vertices of a quadrilateral.   
(b)  A generic function of x and y having four parameters is a so-called bilinear function:  

,axy bx cy d  these are often used for quadrilateral elements.  In the special case where the 
elements are rectangles parallel to the axis, the matter is further discussed in some of the exercises at 
the end of Section 13.2.  
 
EFR 13.3:  (a) The M-file is boxed below: 
function voronoiall(x,y) 
% M-file for EFR 13.3 
% inputs:  two vectors x and y of the same size giving, respectively, 
% the x- and y-coordinates of a set of distinct points in the plane; 
% outputs:  none, but a graphic will be produced of the Voronoi  
% regions corresponding to the point set in the plane,  
% including the unbounded regions 
n=length(x); 
xbar = sum(x)/n; ybar = sum(y)/n; %centroid of points 
md = max(sqrt(x-xbar).^2 + sqrt(y-ybar).^2);  
%maximum distance of points to centroid 
mdx = max(abs(x-xbar)); mdy = max(abs(y-ybar));  
%max x- and y- distances to averages 
% We create additional points that lie in a circle of radius 3md  
% about (xbar, ybar).  We  deploy them with angular gaps of 1 degree, 
% this will be suitable for all practical purposes.   
xnew=x; ynew=y; 
for k = 1:360 
    xnew(n+k)=xbar+3*md*cos(k*pi/180);  
    ynew(n+k)=ybar+3*md*sin(k*pi/180); 
end 
voronoi(xnew,ynew) 
axis([min(x)-mdx/2 max(x)+mdx/2  min(y)-mdy/2  max(y)+mdy/2]) 
(b)  With this program, we can easily re-create Figure 13.9(b): 
>> N=[1 1;5/2 1;0 0;1 0;5/2 0;7/2 0;1 -1;2.5 -1];x=N(:,1); y=N(:,2); 
>> voronoiall(x,y) 

A = 
 

      1           -1            0            1       
      5           -1            0            1       
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 EFR 13.4:  (a)  Although the scheme we used in the solution of part (c) of Example 13.2 can be 
adapted for this triangulation, we will introduce a slightly different approach.  Specifically, we will take 
advantage of the fact that intersections of circles (centered at (0,0)) all have the same boundary angles.  
At each iteration, we will deploy nodes on circles of equally spaced radii in the annular sector domains:  

{( , ) :1/ 2 dist(( , ), (0,0)) 2 (1/ 2 )}n n
n x y x y for n = 1, 2, …   By the special shape of , we 

get the following exact formula for the area of n :  2 2 251
2 2

5

3
Area( ) [(2 2 ) (2 ) ] 2 .n n n

n   

Thus, if we were to deploy (approximately) 100 nodes in n  with a uniform grid, the gap size s should 

(approximately) satisfy:  2 25
2100 2 ns or / 40 2 .ns   We use this for the gaps between radii, 

and, on average, arrange for a similar gap size between adjacent nodes on a given circle of deployment.  
Since the domain is not convex, we will use additional ghost nodes (as in Example 13.3) to help us 
detect and remove unwanted elements.  
    

%Script for EFR 13.4a 
count=1; 
for n=1:7 
s=sqrt(pi/40)/2^n;     
len = 5*pi/2/2^n; %avg. arclength of node circular arc in Omega_n 
nnodes= ceil(len/s); %number of nodes to put on each circular arc 
ncirc = ceil(1/2^n/s);  
%number of circlular arcs w/ to put nodes on Omega_n                   
rads = linspace(2/2^n, 1/2^n+s/2, ncirc); 
%radii of circular arcs with nodes 
angles = linspace(pi/6, 11*pi/6, nnodes); %angles for node deployment  
 
%deploy nodes: 
for r=rads 
    for theta = angles 
        x(count)=r*cos(theta); y(count)=r*sin(theta); count=count+1; 
    end 
end 
end 
%the final portion takes a slightly different approach since we want 
%to deploy nodes throughout the whole sector (not just the annulus).  
%We will thus want the circles of deployment to have radii all the 
%way down to s(gap size), but on the smaller circles we should deploy 
%less nodes 
n=8; s=sqrt(pi/40)/2^n; 
len = 5*pi/2/2^n;  
%avg. arclength of node circular arc in Omega_n-outer circles 
nnodes= ceil(len/s);  
%number of nodes to put on each outer circular arc 
rads = linspace(2/2^n, 0, ceil(2/2^n/s)); 
%radii of circular arcs with nodes 
angles = linspace(pi/6, 11*pi/6, nnodes); %angles for node deployment 
 
%delploy nodes 
for r=rads 
    for theta = linspace(pi/6, 11*pi/6, ceil(len/s*r/(2/2^n))) 
        x(count)=r*cos(theta); y(count)=r*sin(theta); count=count+1; 
    end 
end 
 
% Put in extra ghost nodes to detect bad elements 
% There are several ways to do this, we will deploy them in a  
% sufficient pattern on the positive x-axis. 
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nnodes=count-1; %number of nodes (=932) 
for k=0:7 
  x(count)=1/2^k; y(count)=0; count=count+1; 
  x(count)=.75/2^k; y(count)=0; count=count+1; 
end 
for k=rads 
    if k>0 
     x(count)=k; y(count)=0; count=count+1; 
 end 
end    
tri = delaunay(x,y); 
%The following two commands will plot the triangulation containing 
%the ghost nodes, the latter indicated by pentacles.  This plot and a 
%magnification are shown in the %figure below. 
 

 
 

 
By the way that the ghost nodes were deployed, the unwanted elements are precisely those that have a 
ghost node as one of their vertices.  The remaining code will search and destroy these elements, it is 
modeled after that of Example 13.3.  The final triangulation and a zoomed view are shown in the two 
figures below.  
plot(x(nnodes+1:count-1), y(nnodes+1:count-1), 'rp') 
hold on, trimesh(tri,x,y), axis('equal') 
%>> size(tri) 
%ans = 
%       1876           3 
badelcount=1; 
for ell=1:1876 
    if max(ismember(nnodes+1:count-1, tri(ell,:))) 
        badel(badelcount)=ell; 
        badelcount=badelcount+1; 
    end 
end 
clf 
tri=tri(setdiff(1:1876,badel),:); 
x=x(1:nnodes); y=y(1:nnodes); 
trimesh(tri,x(1:nnodes),y(1:nnodes)), axis('equal') 
 



780 Appendix B:  Solutions to All Exercises for the Reader 
 

 

  
 

(b)  We take the vertices of the domain to be:  (0, 0),  (2,0), (2,1), ( 1, 1), ( 1, 2), and (0, 2).  The 
code below presents yet another variation of node deployment schemes.  The crucial part (Stage 2 in 
the code below) is the deployment of nodes inside the circle with center (0, 0) and radius 0.8.  We put 
an equal number of nodes (13) on each such circle.  Because of the exponential decay of the radii, the 
gaps between radii remain close to the arclength gaps on the corresponding circles.  The code below 
uses ghost nodes and they can be viewed by executing the code up to the line with the first trimesh 
command (as in part (a)).  We show only a figure of the final triangulation along with a zoomed view 
(without axes).   
%Script for EFR 13.4b 
%We deploy the nodes in three stages 
%Stage 1:  Outside the circle of radius 1, center (0,0), squarelike 
%grid with gap size s = 0.2 
%We can do boundary and interior nodes together: 
count=1; 
for xt=-1:.2:2 
    for yt=-2:.2:1 
        pt=[xt yt]; %test point 
        if norm(pt,2)>.8+.1 & ~(xt>0 & yt<0) 
      %these conditions ensure the test point is in the domain and a 
      %safe distance from the boundary of the outer circle of Stage 2 
            x(count)=xt; y(count)=yt; count=count+1; 
        end 
    end 
end 
%Stage 2:  Put nodes on concentric circles with exponential decay of 
%radii 
angles=0:pi/16:3*pi/2;  
%this vector of angles will not change in the loop 
for k=1:40 
    r=.8^k; 
    for theta = angles 
     x(count)=r*cos(theta); y(count)=r*sin(theta); count=count+1; 
     if k==0 & (x(count-1)<-.95|y(count-1)>.95) 
     count=count-1; end %discard points too close to domain boundary 
    end 
end 
%Stage 3:  Put nodes on the inside of the last circle of Stage 2 
gap=3*pi/4*r/13;  
%approx. gap size gotton by dividing arclength of last circle  
%by number of nodes that were put on it 
xvec=linspace(-r,r,2*ceil(r/gap)+1); yvec=xvec; 
for xt=xvec 
    for yt=yvec 
     pt=[xt yt]; %test point 
        if norm(pt,2)<=r-gap/2 & ~(xt>0 & yt<0) 
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          %these conditions ensure the test point is in the domain  
          %and a safe distance from the boundary of the circle 
            x(count)=xt; y(count)=yt; count=count+1; 
        end  
    end 
end 
%plot(x,y,'rp') 
tri = delaunay(x,y); 
hold on, trimesh(tri,x,y), axis('equal') 
 
% Now we put in extra ghost nodes to detect bad elements 
% There are several ways to do this, we will deploy them in a  
% sufficient pattern on the ray theta = - pi/4 
nnodes=count-1; %number of nodes 
x(count)=1; y(count)=-1; count=count+1; 
for k=0:40 
x(count)=.8^k*cos(-pi/4); y(count)=.8^k*sin(-pi/4); count=count+1; 
end 
for k=r:-gap:gap 
x(count)=k*cos(-pi/4); y(count)=k*sin(-pi/4); count=count+1; 
end 
x(count)=gap/2*cos(-pi/4); y(count)=gap/2*sin(-pi/4); count=count+1; 
tri = delaunay(x,y); 
clf, plot(x(nnodes+1:count-1), y(nnodes+1:count-1), 'rp') 
hold on, trimesh(tri,x,y), axis('equal') 
size(tri) 
%ans = 
%       2406           3 
badelcount=1; 
for ell=1:2406 
    if max(ismember(nnodes+1:count-1, tri(ell,:))) 
        badel(badelcount)=ell; 
        badelcount=badelcount+1; 
    end 
end 
clf 
tri=tri(setdiff(1:2406,badel),:); 
x=x(1:nnodes); y=y(1:nnodes); 
trimesh(tri,x,y), axis('equal'),  axis off 
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EFR 13.5:  (a)  In multivariable calculus, it is proved that the gradient vector of a function of two 
variables points in the direction in which the partial derivative is maximum and has magnitude equal to 
this maximum partial derivative.  Also, the gradient is perpendicular to the direction in which the 
partial derivatives are zero.  Since  is a linear function, its gradient is a constant vector.  Since the 
function  is zero on the line joining 1v  and 2 ,v   it follows that the gradient must be perpendicular to 

this side of T and therefore it must be parallel to a  (the opposite direction would have negative partial 
derivative).  The magnitude of the partial derivative, since the function is linear, can be gotten by 
taking the difference quotient of the values of  at the tip and tail of a  over the length of the vector 
a  and this completes the proof of (a). 
(b) The integral will be unchanged if we perform a rotation change of variables (which has Jacobian = 
1), so we may assume that the line joining 1v  and 2v  is the x-axis.  Write 1 ( ,0),v a  2 ( ,0)v b and let 

c denote the x-coordinate of 3.v   Thus a c b  and ( , ) / || || .x y y a   Assume first that .a c b    
The height of the triangle at any value of [ , ]x a b  is given by: 

|| || , if ,
( )

|| || 1 , if .

a x a x c
c c ah x

x ca x c
b c

. 

Thus we may compute: 
2 2( ) 2

0

( ) || || || ||( , ) 1 .
|| || 2 2 2

h xb b c b

T a a a c

y h x a x a a x cx y dxdy dydx dx dx dx
a c a b c

 

These two integrals are easily done by u-substitution.  In the first one, we let ,x au
c a

 so dxdu
c a

 

and the integral becomes:  
2 1

2

0

1( ) ( ).
3

c

a

x a dx c a u du c a
c a

  Similarly, the second integral is 

1 ( );
3

b c  combining these gives 1
3

1 || ||( , ) ( ) Area( ),
3 2T

ax y dxdy b a T  as asserted. In the 

remaining case that c = a or c = b (so the triangle is a right triangle), the function h(x) can be written as 
a single formula and the above proof simplifies.    
 
 
EFR 13.6:  If oldu denotes the exact solution of the BVP of Example 13.5, we let new old 1.u u    

Certainly newu satisfies the PDE ( , )u f x y  since oldu  does.  Also, since old 1u  on the 

boundary, we get that new 2u  on the boundary.  Thus newu will solve the modified BVP.   Since the 

coefficients of the stiffness matrix (see (15 )) do not depend on the boundary values, this matrix A 
will be the same for both problems.  The only change will be in the load vector coefficients;  now 
(16 ) takes on the following form:  

4,5
2 1 3 .i s i

sT T
b f dxdy dxdy  

The only difference from the example is the presence of the factor of 2.  Since the computations leading 
to the load vector b parallel very closely those of Example 13.5, we simply summarize the element-by-
element updates of the vector b: 
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If we solve the resulting matrix equation Ax = b; we get (to 4 decimals) x(1) = 1.9869, and x(2) = 
1.9179.  Comparing with the solutions of the original system:  x(1) = 0.9278 and x(2) = 1.0484, we see 
that the numerical solutions are somewhat close, but definitely do not differ by one.  With finer 
triangulations, the exact relationship would be made more apparent.    
 
EFR 13.7:  (a) We first draw a picture of the region S on which the integration is to take place, and 
realize it lying between two functions of x; see the left figure below.  It is convenient to break the 
integral up into two pieces since the top function experiences a formula change at x = cos( / 4) . 
>> syms x y 
>> Int_A = quad2d(x*y^2,0, cos(pi/4), 0, x)+quad2d(x*y^2,cos(pi/4), 
1, 0, sqrt(1-x^2))   
  Int_A = 0.0236  (This is the numerical approximation to the first integral in “format short.”) 
(b)  The picture, shown on the right below, shows that the curves intersect when x is negative.  We first 
find this intersection point: 
>> xmin = fzero(inline('x^2-1-exp(x)'), -1)  xmin =-1.1478 
>> Int_B = quad2d(exp(1-x^2-2*y^2),xmin, 0, x^2-1, exp(x))  Int_B = 
2.0661  

 
 

 
Note:  Both plots were created in MATLAB using the built-in function patch.   The syntax is as 
follows: 
 
 
 
 
patch([x xrev],  
[flow  ftop_rev], [r g b]) 

 

This command will produce a graphic of a shaded 
region between two functions.  Here x is a vector 
of x-coordinates for an interval on which the 
corresponding vectors flow and ftop_rev 
represent two functions.  The function represented 
by flow has its graph lying below the one 
represented by ftop_rev.  The syntax requires 
also as input the vector xrev that is the vector x 
taken in reverse order.  The vector ftop_rev 
(representing the top function) correspondingly 
needs to be inputted in reverse order.   The final 
input is a 3 1  rgb vector of numbers between 0 
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and 1 that will determine the color of the patch. 
 
As an example, we give the code used to create the second plot: 
>> x=xmin:.01:0; 
>> for i=1:length(x), xrev(i)=x(length(x)+1-i); end 
>> patch([ x xrev], [x.^2-1  exp(xrev)], [.5 .5 .5]), hold on 
>> t = -1.5:.01:.5;  plot(t,t.^2-1,'b'), plot(t,exp(t),'b'),  
>> axis([-1.5 .5 -2 2]) 
>> gtext('y = exp(x)') %use mouse to place text on graphic window 
>> gtext('y = x^2-1') %use mouse to place text on graphic window 
Some embellishments were done to the graph using menu options on the graphics window.   
 
EFR 13.8:  (a)  The M-file is boxed below: 
function integ=triangquad2d(fun,v1,v2,v3) 
% M-file for EFR 13.8.  This function will integrate a function 
% of two variables x and y over a triangle T in the plane.  
% It uses the M-file 'quad2d' of Program 13.1 
% Input variables:  fun = a symbolic expression (using one or both of  
% the symbolic variables x and y,  v1, v2, and v3:  three length 2  
% vectors giving the vertices of the triangle T in the plane. 
% NOTE: Before this program is used, x and y should be declared as  
% symbolic variables.syms x y u 
vys = [v1(2) v2(2) v3(2)]; 
vxs = [v1(1) v2(1) v3(1)]; 
minx=min(vxs); maxx=max(vxs); 
miny=min(vys); 
minyind =find(vys==miny); 
minxind =find(vxs==minx); 
maxxind =find(vxs==maxx); 
if length(minxind)==2|length(maxxind)==2 %triangle has a vertical 
side 
    if length(minxind)==2 
        vertx=minx; 
        vertymax=max(vys(minxind)); 
        vertymin=min(vys(minxind)); 
    else  
        vertx=maxx; 
        vertymax=max(vys(maxxind)); 
        vertymin=min(vys(maxxind)); 
    end 
    thirdind = find(vxs~= vertx); 
    topslope=sym((vys(thirdind)-vertymax)/(vxs(thirdind)-vertx)); 
    botslope=sym((vys(thirdind)-vertymin)/(vxs(thirdind)-vertx)); 
    ytop=topslope*(x-vxs(thirdind))+vys(thirdind); 
    ylow=botslope*(x-vxs(thirdind))+vys(thirdind); 
    integ = quad2d(fun,minx,maxx,ylow,ytop); 
else %no vertical sides so vertices have 3 different x coordinates 
    midind = find(vxs>minx& vxs<maxx); %index of middle vertex 
    longslope=sym((vys(maxxind)-vys(minxind))/(maxx-minx)); 
    ylong = longslope*(x-vxs(minxind))+vys(minxind); 
    if vys(midind)>subs(ylong,x,vxs(midind)); 
    %long edge lies below mid vertex 
     topleftslope = sym((vys(midind)-vys(minxind))/(vxs(midind)-...  
                     vxs(minxind)));  
     toprgtslope = sym((vys(midind)-vys(maxxind))/(vxs(midind)- ... 
                     vxs(maxxind))); 
     ytopleft = topleftslope*(x-vxs(midind))+vys(midind); 
     ytoprgt = toprgtslope*(x-vxs(midind))+vys(midind); 
     integ = quad2d(fun,minx, vxs(midind),ylong,ytopleft)+... 



Appendix B:  Solutions to All Exercises for the Reader 785 
 

 

         quad2d(fun,vxs(midind),maxx,ylong,ytoprgt); 
   else %long edge lies above mid vertex 
     botleftslope = sym((vys(midind)-vys(minxind))/(vxs(midind)- ... 
                      vxs(minxind))); 
     botrgtslope = sym((vys(midind)-vys(maxxind))/(vxs(midind)- ... 
                    vxs(maxxind)));  
     ybotleft = botleftslope*(x-vxs(midind))+vys(midind); 
     ybotrgt = botrgtslope*(x-vxs(midind))+vys(midind); 
     integ = quad2d(fun,minx,vxs(midind),ybotleft,ylong)+... 
         quad2d(fun,vxs(midind),maxx,ybotrgt,ylong); 
   end 
end       
(b)  To recalculate the integrals of Example 13.5, the following commands will suffice and result in the 
same outputs that were obtained in the example: 
>> syms x y 
>> v1 = [1 3]; v2 = [5 1]; v3 = [4 6]; %Triangle of Example 13.5 
>> triangquad2d(2*x*y^2,v1,v2,v3) ans = 724.8000 
>> triangquad2d(sin(x*y*sqrt(y)),v1,v2,v3) ans = 0.1397 
The remaining integrals can be done in the same swift fashion.  We store separately the vertices of the 
two triangles T1 and T2: 
>> v1 = [0 0]; v2 = [6 0]; v3 = [12 2]; %Triangle T1 of EFR 13.8 
>> V1 = [1 3]; V2 = [3 2]; V3 = [2 5]; %Triangle T2 of EFR 13.8 
>> int_1 = triangquad2d(1,v1,v2,v3) int_1 = 6 
>> int_2 = triangquad2d(1,V1,V2,V3)    int_2 = 2.5000 
>> int_3 = triangquad2d(2*x^2,v1,v2,v3)   int_3 = 504 
>> int_4 = triangquad2d(sin(x^2),V1,V2,V3)    int_4 =  -0.2998 
These numerical calculations are all in agreement with the exact answers that were provided.  
 
EFR 13.9:  We will use modification of the method used in part (c) of Example 13.2.  In that 
example, a similar node deployment was required on the same domain, except that there we wanted 
more nodes to be focused near the boundary point (1,0) and here we want the focus area to be the 
boundary point (cos(3), sin(3)).  What we will do is very slightly modify the node deployment code of 
the example (since here we want less nodes) and then simply rotate the node set by an angle of 

3 (using the rotation transformation of Section 7.2).   The rotation idea is quite a natural one; it 
could be circumvented, but then we would need a more serious modification of the code of the 
example.  Since the codes are long, we indicate only the changes needed for the present problem.   
  Referring to the notations of the solution of part (c) of Example 13.2, in the determination of the gap 
size s to use in the region ,n  we will use roughly 10 nodes (rather than 100) per such region, so s 

should satisfy 2 23
210 Area( ) 2 n

ns  or 3 / 20 2 .ns   If we then run through 8 iterations (n 

runs from 0 to 7) of deploying nodes just as in the example, we see that the nodes are a bit sparse in the 
first two regions.  To mitigate this, we make s a bit smaller in the first two iterations.   If we replace the 
first three lines of the node deployment code of the example with the following four lines (and run the 
rest of the code), we will arrive at a triangulation that looks quite appropriate.    
>> n=0; nodecount=1; 
>> while n<8 
s=sqrt(3*pi/20)/2^n; 
if  n==0, s = s/3; elseif n ==1, s=s/2; end   
This node set should now be rotated by an angle of 3,  and this is done using the rotation matrix of 
Section 7.2: 
>> Rot=[cos(3)  -sin(3); sin(3) cos(3)]*[x; y]; 
>> xn = Rot(1,:); yn = Rot(2,:);  %newly rotated nodes for desired 
triangulation.   
Now, in order to be able to more easily use the assembly code of Example 13.7, we should reorder the 
nodes so that the boundary nodes appear last.  This is accomplished with the following commands:  
bdyind = find(xn.^2 + yn.^2 > 1 - 10*eps); 
size(xn), size(bdyind)    1   123,   1    38     
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intind = setdiff(1:123, bdyind); %these are the indices of interior 
nodes 
xn = [xn(intind) xn(bdyind)]; %reordered x-coordinates of nodes 
yn = [yn(intind) yn(bdyind)]; %reordered x-coordinates of nodes 
tri=delaunay(xn,yn); 
trimesh(tri,xn,yn), axis('equal') %triangulation is shown below left 
 
We now store the boundary values: 
for i=86:123 
th=cart2pol(x(i),y(i)); 
if th<0, th=th+2*pi; end 
%need to ensure th is in domain of boundary data function 
c(i)=ex_13_7_bdydata(th); 
end 
 
The assembly code of the example will now work very well in this situation; we need only change the 
first three lines as follows: 
N=[xn' yn']; 
E=tri; 
n=85; m=123; syms x y 
When this and the rest of the code is run, we will have created the numerical solution’s values stored as 
a vector c.  The exact solution’s values can be created just as in the example (the code is verbatim) and 
stored as a vector cp.  This being done, the following command will plot the error of the numerical 
solution; the plot is shown on the right. 
>> trimesh(E,xn,yn,abs(c-cp)) 
Notice that the maximum error is seen to be smaller than that obtained in part (b) of the example (cf. 
Figure 13.38b), using a lot less nodes but a more appropriate node deployment strategy.   
 

  
 
 
EFR 13.10:  (a)  The M-file is boxed below: 
function int = gaussianintapprox(f,V1,V2,V3) 
% M-file for numerically approximating integral of a function f(x,y) 
% over a triangle in the plane with vertices V1, V2, V3 
% Approximation is done using the Gaussian quadrature formula (24) 
% of Chapter 13. 
% Input Variables:  f = an inline function or an M-file of the  
% integrand specified as a function of two variables: x and y 
% V1, V2, V3 length 2 row vectors containing coordinates of the  
% vertices of the triangle.  Output variable: int = approximation 
A=feval(f,(V1(1)+V2(1))/2,(V1(2)+V2(2))/2); 
B=feval(f,(V1(1)+V3(1))/2,(V1(2)+V3(2))/2); 
C=feval(f,(V2(1)+V3(1))/2,(V2(2)+V3(2))/2); 
M=[V1 1;V2 1; V3 1]; 
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area=abs(det(M))/2;  %See formula (5) of Chapter 13 
int=area*(A+B+C)/3; 
(b) After creating and storing the triangulation for part (c) of Example 13.7, and then the boundary 
values (just as was done in the example), the first three lines of the assembly code should read as 
follows: 
>> N=[x' y']; 
>> E=tri; 
>> A=zeros(n); b=zeros(n,1); 
(Same as before, except now we do not need symbolic variables.)  The rest of the assembly code only 
needs changing in the two places where the numerical integrator triangquad2d was used.  To save 
space, we include the relevant modified passages here; the ftp site for this book includes a file for the 
complete code.    
%update stiffness matrix 
for i1=1:length(intnodes) 
for i2=1:length(intnodes) 
fun1 = num2str(intgrad(i1,:)*intgrad(i2,:)',10); %integrand for 
(15ell) 
fun=inline(fun1,'x', 'y'); 
integ=gaussianintapprox(fun,xyt,xyr,xys); 
A(intnodes(i1),intnodes(i2))=A(intnodes(i1),intnodes(i2))+integ; 
end 
end 
%update load vector 
for i=1:length(intnodes) 
for j=1:length(bdynodes) 
fun1 = num2str(intgrad(i,:)*bdygrad(j,:)',10); %integrand for (16ell) 
fun=inline(fun1,'x', 'y'); 
integ=gaussianintapprox(fun,xyt,xyr,xys); 
b(intnodes(i))=b(intnodes(i))-c(bdynodes(j))*integ; 
end 
end 
Whereas the original code took about an hour to run (on the author’s computer), the modified assembly 
code took only a few seconds.  Moreover, an examination of the error plot (against the exact Poisson 
solution) shows the errors of the two methods to be about the same.   
 
EFR 13.11:  For completeness, we include a full code for the FEM.   Assume that the node set 
(vectors x and y) have been constructed as in Example 13.3.  Although from the construction it is clear 
that the nodes on the inner circle came first and those on the outer circle came last, before we 
triangulate, we give a code that will automatically reindex so that the interior nodes precede the 
boundary nodes: 
m = length(x); %m = total number of nodes. 
cnt1=1; cnt2=1; 
for i=1:m 
if norm([x(i) y(i)],2)<1+4*eps %tests if node is on inner circle 
bdy1(cnt1)=i; cnt1=cnt1+1; 
elseif norm([x(i) y(i)],2)>2-4*eps %tests if node is on outer circle 
bdy2(cnt2)=i; cnt2=cnt2+1; 
end 
end 
n=m-length(bdy1)-length(bdy2); % n = total number of interior nodes  
xnew=[x(setdiff(1:m, union(bdy1, bdy2))) x(bdy1) x(bdy2)]; x=xnew; 
ynew=[y(setdiff(1:m, union(bdy1, bdy2))) y(bdy1) y(bdy2)]; y=ynew; 
Next, we form the Delaunay triangulation using the code of Example 13.3.  This being done, we assign 
the boundary values: 
c(n+1:n+length(bdy1))=2; 
for i=n+length(bdy1)+1:m 
th=cart2pol(x(i),y(i)); 
c(i)=cos(2*th); 
end 
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The remaining code below will perform the FEM and create the plot of the numerical solution (Figure 
13.39).   We use Method 2 (Gaussian quadrature for the integrals).  We include the code for 
completeness only, but because of the way we have prepared things, the remaining code is identical to 
that of the preceding EFR (if we had written it out there): 
 
N=[x' y']; 
E=tri; 
A=zeros(n); b=zeros(n,1); 
[L cL]=size(E); 
for ell=1:L 
nodes=E(ell,:); 
bdynodes=nodes(find(nodes>n)); 
intnodes=setdiff(nodes,bdynodes); 
 
%find gradients [a b] of local basis functions 
% ax + by +c; distinguish between int node  
%local basis functions and bdy node local basis  
%functions 
 
for i=1:length(intnodes) 
xyt=N(intnodes(i),:); %main node for local basis function 
onodes=setdiff(nodes,intnodes(i)); 
%two other nodes (w/ zero values) for local basis function 
xyr=N(onodes(1),:); 
xys=N(onodes(2),:); 
M=[xyr 1;xys 1;xyt 1]; %matrix M of (4) 
abccoeff=[xyr(2)-xys(2); xys(1)-xyr(1); xyr(1)*xys(2)-... 
xys(1)*xyr(2)]/det(M); %coefficients of basis function on triangle#L, 
see formula (6a) 
intgrad(i,:)=abccoeff(1:2)'; 
end 
 
for j=1:length(bdynodes) 
xyt=N(bdynodes(j),:); %main node for local basis function 
onodes=setdiff(nodes,bdynodes(j));%two other nodes (w/ zero values) 
for local basis function 
xyr=N(onodes(1),:); 
xys=N(onodes(2),:); 
M=[xyr 1;xys 1;xyt 1]; %matrix M of (4) 
abccoeff=[xyr(2)-xys(2); xys(1)-xyr(1); xyr(1)*xys(2)-... 
xys(1)*xyr(2)]/det(M); %coefficents of basis function on triangle#L, 
see formula (6a) 
bdygrad(j,:)=abccoeff(1:2)'; 
end 
%update stiffness matrix 
for i1=1:length(intnodes) 
for i2=1:length(intnodes) 
fun1 = num2str(intgrad(i1,:)*intgrad(i2,:)',10); %integrand for 
(15ell) 
fun=inline(fun1,'x', 'y'); 
integ=gaussianintapprox(fun,xyt,xyr,xys); 
A(intnodes(i1),intnodes(i2))=A(intnodes(i1),intnodes(i2))+integ; 
end 
end 
 
%update load vector 
for i=1:length(intnodes) 
for j=1:length(bdynodes) 
fun1 = num2str(intgrad(i,:)*bdygrad(j,:)',10); %integrand for (16ell) 
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fun=inline(fun1,'x', 'y'); 
integ=gaussianintapprox(fun,xyt,xyr,xys); 
b(intnodes(i))=b(intnodes(i))-c(bdynodes(j))*integ; 
end 
end 
 
end 
sol=A\b; 
c(1:n)=sol'; 
>> trimesh(tri,x,y,c) 
>> xlabel('x-axis'), ylabel('y-axis') 
 
EFR 13.12:  (a)  Rerun the triangulation code of  the solution of Example 13.2(a).  The construction 
was done in a way that the boundary nodes came last.  So we will be able to adapt the assembly code of 
EFR 13.11 quite simply.  (The only change will be in dealing with the load vector, because of the 
presence of the inhomogeneity function.) 
>> m=length(x); %number of nodes 
>> n = min(find(x.^2+y.^2>1-10*eps))-1;  %number of interior nodes 
Now we easily modify the (boxed) code of the preceding EFR to work for the present situation.  There 
are some changes here due to the fact that the boundary data is now all zero,  but we do have a nonzero 
inhomogeneity fucntion f(x,y), and thus (16 ) takes on the following more simple form:  

1 3 .i
T

b f dxdy   Thus, the “updating the load vector” portion should be replaced by: 

%update load vector 
for i1=1:length(intnodes) 
xyt=N(intnodes(i),:); %main node for local basis function 
onodes=setdiff(nodes,intnodes(i)); 
%two other nodes (w/ zero values) for local basis function 
xyr=N(onodes(1),:); 
xys=N(onodes(2),:); 
M=[xyr 1;xys 1;xyt 1]; %matrix M of (4) 
abccoeff=[xyr(2)-xys(2); xys(1)-xyr(1); xyr(1)*xys(2)-... 
xys(1)*xyr(2)]/det(M); %coefficients of basis function on triangle#L, 
                       %see formula (6a) 
%since we cannot mix M-file and inline functions to input into 
%another M-file, we recode the gaussianintapprox M-file 
atemp=num2str(abccoeff(1),10); btemp=num2str(abccoeff(2),10); 
ctemp=num2str(abccoeff(3),10); 
phixy=inline([atemp, '*x+', btemp, '*y+',ctemp],'x','y'); 
Atemp=feval(@EFR13_12f,(xyt(1)+xyr(1))/2,(xyt(2)+xyr(2))/2)*... 
feval(phixy,(xyt(1)+xyr(1))/2,(xyt(2)+xyr(2))/2); 
Btemp=feval(@EFR13_12f,(xyt(1)+xys(1))/2,(xyt(2)+xys(2))/2)*... 
feval(phixy,(xyt(1)+xys(1))/2,(xyt(2)+xys(2))/2); 
Ctemp=feval(@EFR13_12f,(xyr(1)+xys(1))/2,(xyr(2)+xys(2))/2)*... 
feval(phixy,(xyr(1)+xys(1))/2,(xyr(2)+xys(2))/2); 
M=[xyr(1) xyr(2) 1;xys(1) xys(2) 1; xyt(1) xyt(2) 1]; 
area=abs(det(M))/2; 
integ=area*(Atemp+Btemp+Ctemp)/3; 
b(intnodes(i1))=b(intnodes(i1))+integ; 
end 
 
Also, the loop portion of the assembly code commencing with “for j=1:length(bdynodes)” 
can be deleted since the boundary node gradients that it creates will not be needed in (16 ) .   With 
these modifications, the code will produce the numerical solution of Figure 13.39(b), once an M-file for 
the inhomogeneity function is created (due to the cases in its definition, an inline construction is not 
feasible): 
function z = EFR13_12f(x,y) 
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if norm([x y]-[0 .5],2)<.25 
z=20; 
else 
z=0; 
end 
 
(b)  The assembly instructions are exactly as in part (a), after we have created the node set and 
triangulation according to the specifications.  The following code will create such a triangulation: 
% node deployment, use concentric circles centered at (0, 1/2) 
% except for on the boundary 
% Step 1 inside Omega1 (small circle) has 50% of nodes 
% d1=common gap size 
% avg radius = 1/8, avg. circumf= pi/4,  
% avg no. of nodes on circ = pi/4/d1 
% number of circles = 1/4/d1 
% setting 50% of 800 = [pi/4/d1][1/4/d1] gives 
d1=sqrt(pi/16/400); 
x(1)=0; y(1)=.5; 
nodecount=1; ncirc=floor(1/4/d1); minrad=1/4/ncirc; 
for i=1:ncirc, rad=i*minrad; nnodes=floor(2*pi*rad/d1); 
anglegap=2*pi/nnodes; 
for k=1:nnodes 
  x(nodecount+1)=rad*cos(k*anglegap); 
  y(nodecount+1)=rad*sin(k*anglegap)+.5; 
  nodecount = nodecount+1; 
end 
end 
 
% step 2:  inside annulus Omega2 has 25% of nodes 
% d2=common gap size 
% avg radius = 3/8, avg circumf = 3pi/4,  
% avg no of nodes on circ = 3pi/4/d2 
% number of circles = 1/4/d2 
d2=sqrt(3*pi/16/200); ncirc=floor(1/4/d2);minrad=1/4+(d1+d2)/2; 
%blend interface 
for i=1:ncirc 
  rad=minrad + (i-1)*d2; nnodes=floor(2*pi*rad/d2); 
  anglegap=2*pi/nnodes; 
  for k=1:nnodes 
    x(nodecount+1)=rad*cos(k*anglegap); 
    y(nodecount+1)=rad*sin(k*anglegap)+.5; 
    nodecount = nodecount+1; 
end 
end 
 
% step 3:  inside region Omega3 has 15% of nodes 
% d3 = common gap size 
% avg radius = 3/4, avg arclength (approx)= (2pi +pi)/2*3/4=9pi/8 
% number of circles = 1/2/d3 
d3=sqrt(9*pi/16/120); ncirc=floor(1/2/d3); minrad=1/2+(d2+d3)/2; 
%blend interface 
for i=1:ncirc 
  rad=minrad + (i-1)*d3; nnodes=floor(2*pi*rad/d3); 
  anglegap=2*pi/nnodes; 
   for k=1:nnodes 
    xtest=rad*cos(k*anglegap); ytest=rad*sin(k*anglegap)+.5; 
    if norm([xtest ytest],2)<1-d3/2 %don't put nodes too close to bdy 
 x(nodecount+1)=xtest; y(nodecount+1)=ytest; nodecount = nodecount+1; 
    end 
   end 
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end 
 
% step 4: inside region Omega4 has 10% of nodes 
% d4 = common gap size 
% avg radius = 5/4, avg (approx) arclength =  5pi/4 
% number of circles = 1/2/d4 
d4=sqrt(5*pi/8/80); ncirc=floor(1/2/d4); minrad=1+(d3+d4)/2; %blend 
interface 
for i=1:ncirc 
  rad=minrad + (i-1)*d4; nnodes=floor(2*pi*rad/d4); 
  anglegap=2*pi/nnodes; 
  for k=1:nnodes 
    xtest=rad*cos(k*anglegap); ytest=rad*sin(k*anglegap)+.5; 
    if norm([xtest ytest],2)<1-d4/2 %don't put nodes too close to bdy 
 x(nodecount+1)=xtest; y(nodecount+1)=ytest; nodecount = nodecount+1; 
    end 
  end 
end 
 
% step 5: put nodes on boundary 
% if bdy point is touches Omega3 use d3 spacing 
% otherwise use d4 spacing 
theta=0; 
while theta<2*pi-d4 
  x(nodecount+1)=cos(theta); y(nodecount+1)=sin(theta);  
  nodecount = nodecount+1; 
  if norm([cos(theta) sin(theta)]-[0 .5], 2)<.5 
    theta=theta+d3; 
  else 
    theta=theta+d4; 
  end 
end 
 
EFR 13.13:  (a)  The M-file is boxed below: 
function lineint = bdyintapprox(fun, tri, redges) 
% function M-file for EFR 13.13 
% inputs will be 'fun', an inline function (or M-file) of vars x, y; % a matrix 'tri' of nodes of 
a triangle in the plane, and a 2-column % matrix 'redges', possibly empty ([ ]), containing, as 
rows,  the  
% corresponding node indices (from 1 to 3 indicating nodes 
% by their row in 'tri') of nodes which are endpoints of segments of 
% the triangle which are part of the 'Robin' boundary (for an 
% underlying FEM problem).  Thus the rows of 'redges' can include  
% only the following three vectors:  [1 2], [1 3], and [2 3].  (Or  
% permutations of these.) The output, 'lineint' will be the the 
% Newton-Coates approx. ((31) of Chapter 13) line integral of 'fun'  
% over the Robin segments of the triangle. 
lineint=0; 
[rn cn] = size(redges); %rn = number of Robin edges 
if rn == 0 
    return 
end 
for i=1:rn 
    nodes = redges(i,:); 
    N1=tri(nodes(1),:); N2=tri(nodes(2),:); 
    N1x=N1(1); N1y=N1(2); N2x=N2(1); N2y=N2(2); 
    vec = N2-N1; 
    
approx=norm(vec,2)/6*(feval(fun,N1x,N1y)+4*feval(fun,(N1x+N2x)/2,(N1y+N2y)/2)+feval(fun,N2x,N2y)); 
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    lineint=lineint+approx; 
end    
(b)   
>> tri1 = [0 0;2 0;0 3]; tri2=tri1/10; 
>> f1 = inline('4','x','y'); f2=inline('cos(pi*x/4+pi*y/2)','x','y'); 
>> redges1 = [1 2;2 3]; redges2 = [1 2; 1 3]; 
>> Int1=bdyintapprox(f1,tri1,redges1)  Int1 = 22.4222 
>> abs(Int1-8-4*sqrt(13))  ans = 1.7764e-015  (Error for first approximation) 
>> bdyintapprox(f1,tri2,redges1)  ans = 2.2422 
>> Int2=bdyintapprox(f2,tri1,redges2)  Int2 = 0.3619 (Error for first 
approximation) 
>> abs(Int2-2/pi)  ans = 0.4882 
It is not surprising that the error for the first integration was as small as machine precision, since the 
method is exact for polynomials of degree up to three and we are integrating a constant function.  A 
similar accuracy would hold for the integral over the smaller triangle.  The second integration had a 
very large error and this was due to the fact that the integrand experiences a lot of variation on the 
edges.  A similarly large error (although a bit smaller relatively) would occur if we looked at the 
integral of the second function over the smaller triangle (the error would be 0.1263).  When we utilize 
this integrator in our FEM codes, we can use a fine enough partition (in the portions of the boundary 
where the data has more variation) to prevent such problems.   
 
EFR 13.14:  The PDE and the Dirichlet portion of the BCs are plainly satisfied, so we have only to 
check the Neumann BC on the parabolic portion of the boundary.   A tangent vector to a point on the 
parabola ( ) (10 )y x x x is given by ( ) ( / ) ( , ( )) (1, 10 2 )x d dx x x x .  Since this tangent 
vector has positive x-component, an outward-pointing normal vector can be obtained from it by rotating  

( )x  by an angle of / 2  (see Section 7.2).  Dividing this vector by its Euclidean norm (see Section 

7.6) gives the outward pointing unit normal vector: 
2

( ) (2 10,1) / (2 10,1)n n x x x  

2

(2 10,1) .
4 40 101

x

x x
   Taking the dot product with the gradient of u  ( , ) (0, / 25)u x y y  of the exact 

solution given produces the stated Neumann BC.   
 
EFR 13.15:  The triangulations for this problem have been already done and can simply be 
imported.  The main task is to set up the assembly process.  In the notation of (10), we have:  

2 21, 0, 0, 2 (on  ), 40(on  ),p q g r h ( )f x is as specified.  Thus, 0 ( )sc s n  and the 

element matrix analogues of (28) and (29) (cf., (15 ) and (16 ) become:  

2

[ ] 2 (1 , 3)i i i i
T T

a dxdy ds , and 

2

( , ) 40 (1 3).i i
T T

b f x y dxdy ds  

This is just a bit more involved than the assembly equations for Example 13.8, since in the former there 
were no line integrals in the first (stiffness matrix coefficient) equations.   Nonetheless, the assembly 
code of the example can be easily adapted to fill our present needs.  We first need to store an M-file for 
the inhomogeneity function f(x,y): 
function z = EFR13_15f(x,y) 
if x>=4 & x<=6 & y>=10 & y<=15 
z=200; 
else 
z=0; 
end 
Before running the assembly code below, we assume that the triangulation code of Example 13.8(a) has 
been run.  In particular, the following variables have been created:  nint = the number of interior 
nodes,  n = the number of interior/Robin nodes,  m = the number of nodes,  dir1 = m = node index for 
(0,0), and dir2 = nint + 1 = the node index for (10,0).  As in the example, in the first part of the 
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code, we need not compute gradients of basis functions corresponding to Dirichlet nodes, since the 
Dirichlet boundary values are all zero.   The only new technical issue here is that in the computation of 
the load coefficients (in the first integral), since it is awkward to mix inline functions and M-files into a 
single function, we choose to simply recode the gaussianintapprox M-file (which is a rather 
short code). 
N=[x' y']; E=tri; A=zeros(n); b=zeros(n,1); [L cL]=size(E); 
for ell=1:L 
nodes=E(ell,:); %global node indices of element 
percent=100*ell/L %optional percent meter will show progression. 
intnodes=nodes(find(nodes<=n)); %global interior/Robin node indices 
%find coefficients [a b c] of local basis functions 
% ax + by +c; for  int/robin nodes  
for i=1:length(intnodes) 
xyt=N(intnodes(i),:); %main node for local basis function 
onodes=setdiff(nodes,intnodes(i)); 
%global indices for two other nodes (w/ zero values) for local basis 
function 
xyr=N(onodes(1),:); xys=N(onodes(2),:); 
M=[xyr 1;xys 1;xyt 1]; %matrix M of (4) 
%local basis function coefficients using (6B) 
abccoeff=[xyr(2)-xys(2); xys(1)-xyr(1); xyr(1)*xys(2)-... 
           xys(1)*xyr(2)]/det(M); 
intgrad(i,:)=abccoeff(1:2)'; abc(i,:)=abccoeff'; 
end 
 
% determine if there are any Robin edges 
marker=0; %will change to 1 if there are Robin edges. 
roblocind=find(nodes==dir1|nodes==dir2|(nodes<=n & ... 
                nodes >=(nint+1)));  
%local indices of nodes for possible robin edges 
if length(roblocind>1 
elemnodes = N(nodes,:); 
 
%now find robin edges and make a 2 column matrix out of their local 
%indices. 
rnodes=nodes(roblocind); %global indices of robin nodes 
count=1; 
for k=(nint+1):(n-1) 
if ismember(k,rnodes) & ismember(k+1,rnodes) 
robedges(count,:)=[find(nodes==k)  find(nodes==k+1)]; count=count+1; 
marker =1; 
end 
end 
end 
 
%update stiffness matrix 
for i1=1:length(intnodes) 
for i2=1:length(intnodes) 
if intnodes(i1)>=intnodes(i2) 
%to save some computation, we use symmetry of the stiffness matrix. 
fun1 = num2str(intgrad(i1,:)*intgrad(i2,:)',10);  
            %integrand for (15ell) 
fun=inline(fun1,'x', 'y'); integ=gaussianintapprox(fun,xyt,xyr,xys); 
A(intnodes(i1),intnodes(i2))=A(intnodes(i1),intnodes(i2))+integ; 
 
%now add Robin portion, if applicable 
%robin edges were computed above 
if marker==1 
ai1 = num2str(abc(i1,1),10); ai2 = num2str(abc(i2,1),10);   
bi1 = num2str(abc(i1,2),10); bi2 = num2str(abc(i2,2),10);   
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ci1 = num2str(abc(i1,3),10); ci2 = num2str(abc(i2,3),10); 
prod=inline(['2*(',ai1,'*x+',bi1, '*y+', ci1,')* ... 
      (',ai2,'*x+',bi2, '*y+',ci2,')'],'x','y'); 
A(intnodes(i1),intnodes(i2))=A(intnodes(i1),intnodes(i2)) ... 
            +bdyintapprox(prod,elemnodes, robedges); 
end 
end 
end 
end 
 
%update load vector 
for i1=1:length(intnodes) 
ai1 = num2str(abc(i1,1),10); bi1 = num2str(abc(i1,2),10);  
ci1 = num2str(abc(i1,3),10); 
phi=inline([ai1,'*x+',bi1, '*y+', ci1],'x','y'); 
 
%since we cannot mix M-file and inline functions to input into 
%another M-file, we basically must recode the gaussianintapprox M-
%file 
Atemp=feval(@EFR13_15f,(xyt(1)+xyr(1))/2,(xyt(2)+xyr(2))/2)*... 
      feval(phi,(xyt(1)+xyr(1))/2,(xyt(2)+xyr(2))/2); 
Btemp=feval(@EFR13_15f,(xyt(1)+xys(1))/2,(xyt(2)+xys(2))/2)*... 
      feval(phi,(xyt(1)+xys(1))/2,(xyt(2)+xys(2))/2); 
Ctemp=feval(@EFR13_15f,(xyr(1)+xys(1))/2,(xyr(2)+xys(2))/2)*... 
      feval(phi,(xyr(1)+xys(1))/2,(xyr(2)+xys(2))/2); 
M=[xyr(1) xyr(2) 1;xys(1) xys(2) 1; xyt(1) xyt(2) 1]; 
area=abs(det(M))/2; 
integ=area*(Atemp+Btemp+Ctemp)/3; 
b(intnodes(i1))=b(intnodes(i1))+integ; 
 
%now add Robin portion, if applicable 
%robin edges were computed above 
if marker==1 
prod=inline(['40*(',ai1,'*x+',bi1, '*y+', ci1,')'],'x','y'); 
b(intnodes(i1))=b(intnodes(i1))+ ... 
        bdyintapprox(prod, elemnodes, robedges); 
end 
end 
clear roblocind rnodes robedges 
end 
A=A+A'-A.*eye(n); %Use symmetry to fill in remaining entries of A. 
 
sol=A\b; 
c(1:n)=sol'; 
c(n+1:m)=0; 
 
%The result is now easily plotted using the 'trimesh' function of the 
%last section: 
 
x=N(:,1); y=N(:,2); 
trimesh(E,x,y,c) 
hidden off 
xlabel('x-axis'), ylabel('y-axis') 
The above code will produce a plot of the FEM solution. 
  
EFR 13.16:  In the notation of (10), we have: 11, 0, 0, 100(on  ),p q f g 0,1,r  

2or 2 (on  ), and 20,20, or 30(on  ).h  The element matrix analogues of (28) and (29) (cf., 

(15 ) and (16 ) ) thus become:  
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2

[ ] (1 , 3),i i i i
T T

a dxdy r ds  and 

2

21

( , ) 40

100 [ ] (1 3).

i i
T T

m

s i s i
s n T T

b f x y dxdy ds

dxdy r ds
 

 
The triangulation is new but can be accomplished with the various techniques that we have developed 
so far.  Here is the complete annotated code for our construction.  The code also introduces some 
special variables used to store important node numbers corresponding to the eight corner nodes on the 
boundary.   
 
%Mesh Generation 
A =36-pi*(4+1); %area of region  
delta = sqrt(A/2500); count = 1; 
 
 
%place interior nodes first 
for i=1:ceil(6/delta), for j=1:ceil(6/delta) 
xt=i*delta; yt=j*delta; xy=[xt yt]; 
if norm(xy,2)>2+delta/2 & norm(xy-[6 0],2)>2+delta/2 & ... 
   norm(xy-[6 6],2)>2+delta/2 &norm(xy-[0 6],2)>2+delta/2 ... 
   & norm(xy-[3 3],2)>1+delta/2 & xt<6-delta/2 & yt<6-delta/2  
x(count)=xt; y(count)=yt; count=count+1; 
end, end, end 
nint=count-1; %number of interior nodes 
 
%now deploy boundary nodes; we will group them according to their 
%boundary conditions; as usual, the Robin nodes precede the Dirichlet 
%nodes.  At the corners there is some ambiguity since the normal 
%vector is undefined.  We make some conventions that Robin  
%conditions take precedence over Neumann conditions, and for Neumann 
%conditions at an interface, we simply average the values of the 
%normal derivative values.   
 
%Helpful Auxilliary Vectors: 
v1=linspace(2,4,2/delta); lenv1=length(v1); 
thetaout=linspace(0,pi/2,pi/delta); %node angular gaps for big 
quarter circles 
lenthout=length(thetaout); 
thetain=linspace(0,2*pi,2*pi/delta); %node angular gaps for smaller 
interior cirlce 
lenthin=length(thetain); 
 
%Neumann conditions with zero boundary values: 
for i=2:lenv1 %east 
x(count)=6; y(count)=v1(i); count=count+1; 
end 
for i=2:lenthout %northeast 
x(count)=6+2*cos(-pi/2-thetaout(i)); y(count)=6+2*sin(-pi/2-... 
    thetaout(i)); count=count+1; 
end 
toprightindex=count-1 
 
for i=2:lenv1 %north 
x(count)=6-v1(i); y(count)=6; count=count+1; 
end 
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topleftindex=count-1 
 
for i=2:lenthout %northwest 
x(count)=2*cos(-thetaout(i)); y(count)=6+2*sin(-thetaout(i)); 
count=count+1; 
end 
 
for i=2:lenv1-1 %west 
x(count)=0; y(count)=6-v1(i); count=count+1; 
end 
lastwestind=count-1 
firstsouthind=count 
 
for i=2:lenv1-1 %south 
x(count)=v1(i); y(count)=0; count=count+1; 
end 
lastsouthind=count-1 
 
%Now we move on to the two Robin portions 
firstswind=count 
for i=1:lenthout %southwest 
x(count)=2*cos(thetaout(i)); y(count)=2*sin(thetaout(i)); 
count=count+1; 
end 
lastswind=count-1 
firstseind=count 
 
for i=1:lenthout %southeast 
x(count)=6+2*cos(pi/2+thetaout(i)); y(count)=2*sin(pi/2+thetaout(i)); 
count=count+1; 
end 
n=count-1 %number of interior and Robin nodes 
lastseind=n; 
 
% finally put in the Dirichlet nodes 
for i=1:lenthin 
x(count)=3+cos(thetain(i)); y(count)=3+sin(thetain(i)); 
count=count+1; 
end 
m=count-1   %number of nodes 
 
%ASIDE:  Enter these commands to plot the nodes 
%plot(x(1:nint),y(1:nint),'b.'), axis('equal') 
%hold on 
%plot(x(nint:m),y(nint:m),'rp'), axis('equal') 
 
%Since the domain is not convex (in 5 spots) we will use the 
%technique of Example 13.3 of introducing 5 ghost nodes that will 
%yield a triangulation from which it will be easier to delete the 
%unwanted triangles 
 
x(m+1)=3; y(m+1)=3; 
x(m+2)=5; y(m+2)=1; 
x(m+3)=5; y(m+3)=5; 
x(m+4)=1; y(m+4)=5; 
x(m+5)=1; y(m+5)=1; 
tri=delaunay(x,y); 
trimesh(tri,x,y,'LineWidth', 1.2), axis('equal')  
%Plots the triangulation 



Appendix B:  Solutions to All Exercises for the Reader 797 
 

 

axis('equal') 
%Now we need to delete all elements which have a node with index in 
%the range m+1 to m+5.   
size(tri)  %ans =5224  3,  so there are 5224 elements 
badelcount=1; 
for ell=1:5224 
if sum(ismember(m+1:m+5, tri(ell,:)))>0 
badel(badelcount)=ell; 
badelcount=badelcount+1; 
end 
end 
 
tri=tri(setdiff(1:5224,badel),:); 
x=x(1:m); y=y(1:m); 
trimesh(tri,x,y), axis('equal')  
 
To facilitate writing the assembly code, we store the following M-files for the functions r and h: 
function z=h_EFR13_16(x,y) 
%Inhomogeneity function for 
Neumann/Robin BC of %EFR13.16.   
if y>2+eps & y<6-eps 
    z=0; 
elseif y>=6-eps, z=20; 
elseif y<eps, z=-20; 
elseif (y>=eps & y<=2+eps)|[x y]==[2 
0]|[x y]==[4 0] 
    z=30; 
end 
if y==0 & (x==2|x==4), z=5; end 
if y==2, z=15; end 
if y==6 % (x==2|x==4), z=5; end 

function r=r_EFR13_16(x,y) 
%u-coefficient function 
for %Neumann/Robin BC of 
%EFR13.16. 
if (y>=0&y<=2) & x<=2 
    r=1; 
elseif (y>=0&y<=2) & x>=4 
    r=2; 
else 
    r=0; 
end 

The assembly code is long, but it can be done by combining elements of the others we have developed 
so far.   For space considerations we will refer the complete assembly code to the FTP site for the book 
(see beginning of this appendix for the URL.)    
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