Confenfs

Preface XV
About the Author xix
Dependency Chart. xxi
Chapter 1: Logical Operators. 1
Helicopter Tour 1
Section 1: Statements and Truth Values 2
Section 2: Negations, Conjunctions, and Disjunctions 2
Section 3: Truth Tables 3
Section 4: Implications 4
Section 5: Converses and Contrapositives 5
Section 6: Logical Equivalence and Biconditionals 6
Section 7: Hierarchy of Logical Operators 8
Section 8: Some Useful Logical Equivalences 10
Section 9: Logical Implication 12
Section 10: Proofs and Counterexamples 13
Section 11: Logical Puzzles 18
Chapter 1 Exercises 19
Chapter 2: Logical Quantifiers 27
Helicopter Tour 27
Section 1: Predicates and Universes 27
Section 2: Universal and Existential Quantifiers 29
Section 3: Negations of Quantifiers 29Section 4: Nested Quantifiers 31Chapter 2 Exercises 34
Chapter 3: Sets 41
Helicopter Tour 41Section 1: Sets and Their Elements 41
Section 2: Unions and Intersections 42
Section 3: Venn Diagrams 43
Section 4: Subsets and the Empty Set 44
Section 5: Complements and Differences of Sets 45 45
Section 6: Set Theoretic Identities 46
Section 7: Unions and Intersections of Set Families 49
Section 8: Power Sets 50
Section 9: Cartesian Products of Sets 52
Section 10: The Historical Development of Logic and Sets 54
Chapter 3 Exercises 57
Chapter 4: Relations and Functions. 65
Helicopter Tour 65
Section 1: Binary Relations 65
Section 2: Functions 67
Section 3: Function Images and PreImages 69
Section 4: One-to-One, Onto, and Bijective Functions 73
Section 5: Inverse Functions 75
Section 6: The Composition of Two Functions 76
Chapter 4 Exercises 78
Chapter 5: Equivalence Relations and Partial Orderings. 87
Helicopter Tour 87
Section 1: Equivalence Relations 87
Section 2: Congruence Modulo a Positive Integer 90
Section 3: Equivalence Classes and Their Representatives 92
Section 4: Two Natural Ways to Create an Equivalence Relation 94
Section 5: Strings 96
Section 6: Partial Order(ings) 96
Section 7: Hasse Diagrams 98
Section 8: Poset Isomorphisms 100
Chapter 5 Exercises 102
Chapter 6: Mathematical Induction 109
Helicopter Tour 109
Section 1: The Principle of Mathematical Induction: Basic Form 109
Section 2: The Principle of Mathematical Induction: General Form 112
Section 3: Strong Mathematical Induction 116
Section 4: Finite Geometric Series 118
Chapter 6 Exercises 119
Chapter 7: Recursion 125
Helicopter Tour 125
Section 1: Infinite Sequences 126
Section 2: Recursion and Recursively Defined Sequences 126
Section 3: The Fibonacci Sequence 129
Section 4: Recursive Sequences of Higher Degree 135

Section 5: Explicit Solution Methods for Linear Recursion Formulas 139
Chapter 7 Exercises 145
Chapter 8: Some Number Theory... 153
Helicopter Tour 153
Section 1: Divisibility 153
Section 2: Primes 154
Section 3: The Prime Number Theorem 155
Section 4: Greatest Common Divisors, Relatively Prime Integers 156
Section 5: The Division Algorithm 158
Section 6: The Euclidean Algorithm 158
Section 7: Congruent Substitutions in Modular Arithmetic 163
Section 8: Fermat's Little Theorem 165
Section 9: Euler's Theorem 169
Section 10: Orders and Primitive Roots 171
Chapter 8 Exercises 173
Chapter 9: Representations of Integers in Different Bases 181
Helicopter Tour 181
Section 1: Representation of Integers in a Base $b 181$
Section 2: Hex(adecimal) and Binary Expansions 184
Section 3: Addition Algorithm with Base b Expansions 187
Section 4: Subtraction Algorithm with Base b Expansions 189
Section 5: Multiplication Algorithm in Base b Expansions 192
Chapter 9 Exercises 195
Chapter 10: Modular Arithmetic and Congruences 201
Helicopter Tour 201
Section 1: Modular Integer Systems 201
Section 2: Modular Inverses 205
Section 3: Fast Modular Exponentiation 208
Section 4: Congruences 210
Section 5: Solving Linear Congruences 211
Section 6: The Chinese Remainder Theorem 213
Section 7: Pseudo-Random Numbers: The Linear Congruential Method 219
Section 8: The Extended Euclidean Algorithm 220
Chapter 10 Exercises 222
Chapter 11: Fundamental Principles of Counting 231
Helicopter Tour 231
Section 1: The Multiplication Principle 231
Section 2: The Complement Principle 235
Section 3: The Inclusion-Exclusion Principle 236
Section 4: The Pigeonhole Principle 239
Section 5: The Generalized Pigeonhole Principle 242
Chapter 11 Exercises 243
Chapter 12: Permutations and Combinations 247
Helicopter Tour 247
Section 1: The Difference Between a Permutation and a Combination 247
Section 2: Computing and Counting with Permutations and Combinations 250
Section 3: The Binomial Theorem 255
Section 4: Multinomial Coefficients 259
Section 5: The Multinomial Theorem 261
Chapter 12 Exercises 265
Chapter 13: Searching and Sorting Algorithms 271
Helicopter Tour 271
Section 1: The Linear Search Algorithm 272
Section 2: The Binary Search Algorithm 273
Section 3: The Selection Sort Algorithm 275
Section 4: The Bubble Sort Algorithm 276
Section 5: The Quick Sort Algorithm 278
Section 6: The Merge Sort Algorithm 281
Section 7: A Randomized Algorithm for Computing Medians 284
Chapter 13 Exercises 287
Chapter 14: Growth Rates of Functions and 293
Complexity of Algorithms.
Helicopter Tour 293
Section 1: A Brief and Informal Preview 293
Section 2: Big-O Notation 295
Section 3: Combinations of Big-O Estimates 300
Section 4: Big-Omega and Big-Theta Notation 302
Section 5: Complexity of Algorithms 304
Section 6: Optimality of the Merge Sort Algorithm 307
Section 7: The Classes P and NP 310
Chapter 14 Exercises 312
Chapter 15: Graph Concepts and Properties 319
Helicopter Tour 319
Section 1: Simple Graphs 320
Section 2: General Graphs 321
Section 3: Degrees, Regular Graphs, and the Handshaking Theorem 322
Section 4: Some Important Families of Simple Graphs 324
Section 5: Bipartite Graphs 326
Section 6: Degree Sequences 328
Section 7: Subgraphs 333
Section 8: Isomorphism of Simple Graphs 335
Section 9: The Complement of a Simple Graph 339
Section 10: Representing Graphs on Computers 340
Section 11: Directed Graphs (Digraphs) 344
Section 12: Some Graph Models for Optimization Problems 349
Chapter 15 Exercises 351
Chapter 16: Paths, Connectedness, and Distances in Graphs 363
Helicopter Tour 363
Section 1: Paths, Circuits, and Reachability in Graphs 363
Section 2: Paths, Circuits, and Reachability in Digraphs 364
Section 3: Connectedness and Connected Components 365
Section 4: Distances and Diameters in Graphs 367
Section 5: Eccentricity, Radius, and Central Vertices 369
Section 6: Adjacency Matrices and Distance Computations inGraphs and Directed Graphs 372
Section 7: Edge and Vertex Cuts in Connected Graphs/Digraphs 379
Section 8: Characterization of Bipartite Graphs Using Cycles 381
Chapter 16 Exercises 382
Chapter 17: Trees 391
Helicopter Tour 391
Section 1: Basic Concepts About Trees 391
Section 2: Rooted Trees and Binary Trees 396
Section 3: Models with Rooted Trees 397
Section 4: Properties of Rooted Trees 400
Section 5: Ordered Tree Traversal Algorithms 403
Section 6: Binary Search Trees 412
Section 7: Representing Rooted Trees on Computers 415
Chapter 17 Exercises 417
Chapter 18: Graph Traversal Problems 425
Helicopter Tour 425
Section 1: Euler Paths and Tours 426
Section 2: Euler Paths and Tours in Digraphs 433
Section 3: Application of Eulerian Digraphs: De Bruijn Sequences 435
Section 4: Hamilton Paths and Tours 439
Section 5: Application of Hamiltonian Graphs: Gray Codes 443
Section 6: Sufficient Conditions for a Graph to be Hamiltonian 443
Section 7: Necessary Conditions for a Graph to be Hamiltonian 444
Chapter 18 Exercises 447
Appendix A: Pseudo Code Dictionary 457
Appendix B: Randomness and Probability. 463
Appendix C: Answers and Brief Solutions to Selected. 475
Odd-Numbered Exercises
References 539
Index of Algorithms 541
Index 543

